![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sndisj | GIF version |
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 4008 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
2 | moeq 2935 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
3 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
4 | velsn 3635 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
5 | 3, 4 | sylib 122 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
6 | 5 | eqcomd 2199 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
7 | 6 | moimi 2107 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
9 | 1, 8 | mpgbir 1464 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃*wmo 2043 ∈ wcel 2164 {csn 3618 Disj wdisj 4006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rmo 2480 df-v 2762 df-sn 3624 df-disj 4007 |
This theorem is referenced by: 0disj 4026 disjsnxp 6290 |
Copyright terms: Public domain | W3C validator |