ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj GIF version

Theorem sndisj 4029
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj 𝑥𝐴 {𝑥}

Proof of Theorem sndisj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4012 . 2 (Disj 𝑥𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
2 moeq 2939 . . 3 ∃*𝑥 𝑥 = 𝑦
3 simpr 110 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥})
4 velsn 3639 . . . . . 6 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
53, 4sylib 122 . . . . 5 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 = 𝑥)
65eqcomd 2202 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑥 = 𝑦)
76moimi 2110 . . 3 (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
82, 7ax-mp 5 . 2 ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥})
91, 8mpgbir 1467 1 Disj 𝑥𝐴 {𝑥}
Colors of variables: wff set class
Syntax hints:  wa 104  ∃*wmo 2046  wcel 2167  {csn 3622  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rmo 2483  df-v 2765  df-sn 3628  df-disj 4011
This theorem is referenced by:  0disj  4030  disjsnxp  6295
  Copyright terms: Public domain W3C validator