ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj GIF version

Theorem sndisj 4050
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj 𝑥𝐴 {𝑥}

Proof of Theorem sndisj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4032 . 2 (Disj 𝑥𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
2 moeq 2952 . . 3 ∃*𝑥 𝑥 = 𝑦
3 simpr 110 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥})
4 velsn 3655 . . . . . 6 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
53, 4sylib 122 . . . . 5 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 = 𝑥)
65eqcomd 2212 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑥 = 𝑦)
76moimi 2120 . . 3 (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
82, 7ax-mp 5 . 2 ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥})
91, 8mpgbir 1477 1 Disj 𝑥𝐴 {𝑥}
Colors of variables: wff set class
Syntax hints:  wa 104  ∃*wmo 2056  wcel 2177  {csn 3638  Disj wdisj 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rmo 2493  df-v 2775  df-sn 3644  df-disj 4031
This theorem is referenced by:  0disj  4051  disjsnxp  6341
  Copyright terms: Public domain W3C validator