| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sndisj | GIF version | ||
| Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 4013 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
| 2 | moeq 2939 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
| 3 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
| 4 | velsn 3640 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 5 | 3, 4 | sylib 122 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
| 6 | 5 | eqcomd 2202 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
| 7 | 6 | moimi 2110 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
| 9 | 1, 8 | mpgbir 1467 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃*wmo 2046 ∈ wcel 2167 {csn 3623 Disj wdisj 4011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rmo 2483 df-v 2765 df-sn 3629 df-disj 4012 |
| This theorem is referenced by: 0disj 4031 disjsnxp 6304 |
| Copyright terms: Public domain | W3C validator |