ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss1 GIF version

Theorem disjss1 4016
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3177 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . . . . 5 (𝐴𝐵 → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
32alrimiv 1888 . . . 4 (𝐴𝐵 → ∀𝑥((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
4 moim 2109 . . . 4 (∀𝑥((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)) → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
53, 4syl 14 . . 3 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
65alimdv 1893 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶)))
7 dfdisj2 4012 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
8 dfdisj2 4012 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
96, 7, 83imtr4g 205 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  ∃*wmo 2046  wcel 2167  wss 3157  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-rmo 2483  df-in 3163  df-ss 3170  df-disj 4011
This theorem is referenced by:  disjeq1  4017  disjx0  4032  fsumiun  11642
  Copyright terms: Public domain W3C validator