ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss1 GIF version

Theorem disjss1 3965
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3136 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 334 . . . . 5 (𝐴𝐵 → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
32alrimiv 1862 . . . 4 (𝐴𝐵 → ∀𝑥((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
4 moim 2078 . . . 4 (∀𝑥((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)) → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
53, 4syl 14 . . 3 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
65alimdv 1867 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶)))
7 dfdisj2 3961 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
8 dfdisj2 3961 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
96, 7, 83imtr4g 204 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  ∃*wmo 2015  wcel 2136  wss 3116  Disj wdisj 3959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-rmo 2452  df-in 3122  df-ss 3129  df-disj 3960
This theorem is referenced by:  disjeq1  3966  disjx0  3981  fsumiun  11418
  Copyright terms: Public domain W3C validator