| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjss1 | GIF version | ||
| Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjss1 | ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 336 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 3 | 2 | alrimiv 1888 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 4 | moim 2109 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 6 | 5 | alimdv 1893 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 7 | dfdisj2 4012 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 8 | dfdisj2 4012 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) | |
| 9 | 6, 7, 8 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃*wmo 2046 ∈ wcel 2167 ⊆ wss 3157 Disj wdisj 4010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-rmo 2483 df-in 3163 df-ss 3170 df-disj 4011 |
| This theorem is referenced by: disjeq1 4017 disjx0 4032 fsumiun 11642 |
| Copyright terms: Public domain | W3C validator |