ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss1 GIF version

Theorem disjss1 4012
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . . . 6 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 336 . . . . 5 (𝐴𝐵 → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
32alrimiv 1885 . . . 4 (𝐴𝐵 → ∀𝑥((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)))
4 moim 2106 . . . 4 (∀𝑥((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐶)) → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
53, 4syl 14 . . 3 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝑦𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐶)))
65alimdv 1890 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶)))
7 dfdisj2 4008 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
8 dfdisj2 4008 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
96, 7, 83imtr4g 205 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  ∃*wmo 2043  wcel 2164  wss 3153  Disj wdisj 4006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-rmo 2480  df-in 3159  df-ss 3166  df-disj 4007
This theorem is referenced by:  disjeq1  4013  disjx0  4028  fsumiun  11620
  Copyright terms: Public domain W3C validator