| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isset | GIF version | ||
| Description: Two ways to say
"𝐴 is a set": A class 𝐴 is a
member of the
universal class V (see df-v 2775)
if and only if the class 𝐴
exists (i.e. there exists some set 𝑥 equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
Notational convention: We will use the
notational device "𝐴 ∈ V " to mean "𝐴 is a
set" very
frequently, for example in uniex 4492. Note the when 𝐴 is not
a set,
it is called a proper class. In some theorems, such as uniexg 4494, in
order to shorten certain proofs we use the more general antecedent
𝐴
∈ 𝑉 instead of
𝐴 ∈
V to mean "𝐴 is a set."
Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2202 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| isset | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2202 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ V)) | |
| 2 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantru 302 | . . 3 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ V)) |
| 4 | 3 | exbii 1629 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ V)) |
| 5 | 1, 4 | bitr4i 187 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: issetf 2781 isseti 2782 issetri 2783 elex 2785 elisset 2788 vtoclg1f 2834 ceqex 2904 eueq 2948 moeq 2952 mosubt 2954 ru 3001 sbc5 3026 snprc 3703 snmb 3759 snssb 3772 vprc 4184 opelopabsb 4314 eusvnfb 4509 elrelimasn 5057 euiotaex 5257 fvmptdf 5680 fvmptdv2 5682 fmptco 5759 brabvv 6004 ovmpodf 6090 ovi3 6096 tfrlemibxssdm 6426 tfr1onlembxssdm 6442 tfrcllembxssdm 6455 ecexr 6638 snexxph 7067 fnpr2ob 13247 bj-vprc 15970 bj-vnex 15972 bj-2inf 16012 |
| Copyright terms: Public domain | W3C validator |