ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isset GIF version

Theorem isset 2806
Description: Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2801) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4527. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4529, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2225 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
isset (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isset
StepHypRef Expression
1 df-clel 2225 . 2 (𝐴 ∈ V ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ V))
2 vex 2802 . . . 4 𝑥 ∈ V
32biantru 302 . . 3 (𝑥 = 𝐴 ↔ (𝑥 = 𝐴𝑥 ∈ V))
43exbii 1651 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ V))
51, 4bitr4i 187 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  issetf  2807  isseti  2808  issetri  2809  elex  2811  elisset  2814  vtoclg1f  2860  ceqex  2930  eueq  2974  moeq  2978  mosubt  2980  ru  3027  sbc5  3052  snprc  3731  snmb  3787  snssb  3800  vprc  4215  opelopabsb  4347  eusvnfb  4544  elrelimasn  5093  euiotaex  5294  fvmptdf  5721  fvmptdv2  5723  fmptco  5800  brabvv  6049  ovmpodf  6135  ovi3  6141  tfrlemibxssdm  6471  tfr1onlembxssdm  6487  tfrcllembxssdm  6500  ecexr  6683  snexxph  7113  fnpr2ob  13368  bj-vprc  16217  bj-vnex  16219  bj-2inf  16259
  Copyright terms: Public domain W3C validator