ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isset GIF version

Theorem isset 2744
Description: Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2740) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4438. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4440, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2173 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
isset (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isset
StepHypRef Expression
1 df-clel 2173 . 2 (𝐴 ∈ V ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ V))
2 vex 2741 . . . 4 𝑥 ∈ V
32biantru 302 . . 3 (𝑥 = 𝐴 ↔ (𝑥 = 𝐴𝑥 ∈ V))
43exbii 1605 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ V))
51, 4bitr4i 187 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  Vcvv 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2740
This theorem is referenced by:  issetf  2745  isseti  2746  issetri  2747  elex  2749  elisset  2752  vtoclg1f  2797  ceqex  2865  eueq  2909  moeq  2913  mosubt  2915  ru  2962  sbc5  2987  snprc  3658  snssb  3726  vprc  4136  opelopabsb  4261  eusvnfb  4455  elrelimasn  4995  euiotaex  5195  fvmptdf  5604  fvmptdv2  5606  fmptco  5683  brabvv  5921  ovmpodf  6006  ovi3  6011  tfrlemibxssdm  6328  tfr1onlembxssdm  6344  tfrcllembxssdm  6357  ecexr  6540  snexxph  6949  fnpr2ob  12759  bj-vprc  14651  bj-vnex  14653  bj-2inf  14693
  Copyright terms: Public domain W3C validator