![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isset | GIF version |
Description: Two ways to say
"𝐴 is a set": A class 𝐴 is a
member of the
universal class V (see df-v 2740)
if and only if the class 𝐴
exists (i.e. there exists some set 𝑥 equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
Notational convention: We will use the
notational device "𝐴 ∈ V " to mean "𝐴 is a
set" very
frequently, for example in uniex 4438. Note the when 𝐴 is not
a set,
it is called a proper class. In some theorems, such as uniexg 4440, in
order to shorten certain proofs we use the more general antecedent
𝐴
∈ 𝑉 instead of
𝐴 ∈
V to mean "𝐴 is a set."
Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2173 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
isset | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2173 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ V)) | |
2 | vex 2741 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantru 302 | . . 3 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ V)) |
4 | 3 | exbii 1605 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ V)) |
5 | 1, 4 | bitr4i 187 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2740 |
This theorem is referenced by: issetf 2745 isseti 2746 issetri 2747 elex 2749 elisset 2752 vtoclg1f 2797 ceqex 2865 eueq 2909 moeq 2913 mosubt 2915 ru 2962 sbc5 2987 snprc 3658 snssb 3726 vprc 4136 opelopabsb 4261 eusvnfb 4455 elrelimasn 4995 euiotaex 5195 fvmptdf 5604 fvmptdv2 5606 fmptco 5683 brabvv 5921 ovmpodf 6006 ovi3 6011 tfrlemibxssdm 6328 tfr1onlembxssdm 6344 tfrcllembxssdm 6357 ecexr 6540 snexxph 6949 fnpr2ob 12759 bj-vprc 14651 bj-vnex 14653 bj-2inf 14693 |
Copyright terms: Public domain | W3C validator |