ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isset GIF version

Theorem isset 2766
Description: Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2762) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4469. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4471, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2189 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
isset (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isset
StepHypRef Expression
1 df-clel 2189 . 2 (𝐴 ∈ V ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ V))
2 vex 2763 . . . 4 𝑥 ∈ V
32biantru 302 . . 3 (𝑥 = 𝐴 ↔ (𝑥 = 𝐴𝑥 ∈ V))
43exbii 1616 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ V))
51, 4bitr4i 187 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  issetf  2767  isseti  2768  issetri  2769  elex  2771  elisset  2774  vtoclg1f  2820  ceqex  2888  eueq  2932  moeq  2936  mosubt  2938  ru  2985  sbc5  3010  snprc  3684  snssb  3752  vprc  4162  opelopabsb  4291  eusvnfb  4486  elrelimasn  5032  euiotaex  5232  fvmptdf  5646  fvmptdv2  5648  fmptco  5725  brabvv  5965  ovmpodf  6051  ovi3  6057  tfrlemibxssdm  6382  tfr1onlembxssdm  6398  tfrcllembxssdm  6411  ecexr  6594  snexxph  7011  fnpr2ob  12926  bj-vprc  15458  bj-vnex  15460  bj-2inf  15500
  Copyright terms: Public domain W3C validator