Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isset | GIF version |
Description: Two ways to say
"𝐴 is a set": A class 𝐴 is a
member of the
universal class V (see df-v 2737)
if and only if the class 𝐴
exists (i.e. there exists some set 𝑥 equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
Notational convention: We will use the
notational device "𝐴 ∈ V " to mean "𝐴 is a
set" very
frequently, for example in uniex 4431. Note the when 𝐴 is not
a set,
it is called a proper class. In some theorems, such as uniexg 4433, in
order to shorten certain proofs we use the more general antecedent
𝐴
∈ 𝑉 instead of
𝐴 ∈
V to mean "𝐴 is a set."
Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2171 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
isset | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2171 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ V)) | |
2 | vex 2738 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantru 302 | . . 3 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ V)) |
4 | 3 | exbii 1603 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ V)) |
5 | 1, 4 | bitr4i 187 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1490 ∈ wcel 2146 Vcvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: issetf 2742 isseti 2743 issetri 2744 elex 2746 elisset 2749 vtoclg1f 2794 ceqex 2862 eueq 2906 moeq 2910 mosubt 2912 ru 2959 sbc5 2984 snprc 3654 snssb 3722 vprc 4130 opelopabsb 4254 eusvnfb 4448 euiotaex 5186 fvmptdf 5595 fvmptdv2 5597 fmptco 5674 brabvv 5911 ovmpodf 5996 ovi3 6001 tfrlemibxssdm 6318 tfr1onlembxssdm 6334 tfrcllembxssdm 6347 ecexr 6530 snexxph 6939 bj-vprc 14188 bj-vnex 14190 bj-2inf 14230 |
Copyright terms: Public domain | W3C validator |