Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elvd | GIF version |
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2729) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.) |
Ref | Expression |
---|---|
elvd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) |
Ref | Expression |
---|---|
elvd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . 2 ⊢ 𝑥 ∈ V | |
2 | elvd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: omp1eomlem 7059 imasnopn 12949 pw1nct 13893 |
Copyright terms: Public domain | W3C validator |