ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvd GIF version

Theorem elvd 2744
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2742) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
Hypothesis
Ref Expression
elvd.1 ((𝜑𝑥 ∈ V) → 𝜓)
Assertion
Ref Expression
elvd (𝜑𝜓)

Proof of Theorem elvd
StepHypRef Expression
1 vex 2742 . 2 𝑥 ∈ V
2 elvd.1 . 2 ((𝜑𝑥 ∈ V) → 𝜓)
31, 2mpan2 425 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  omp1eomlem  7095  subrgpropd  13374  imasnopn  13884  pw1nct  14837
  Copyright terms: Public domain W3C validator