ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvd GIF version

Theorem elvd 2717
Description: Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2715) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
Hypothesis
Ref Expression
elvd.1 ((𝜑𝑥 ∈ V) → 𝜓)
Assertion
Ref Expression
elvd (𝜑𝜓)

Proof of Theorem elvd
StepHypRef Expression
1 vex 2715 . 2 𝑥 ∈ V
2 elvd.1 . 2 ((𝜑𝑥 ∈ V) → 𝜓)
31, 2mpan2 422 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2128  Vcvv 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-v 2714
This theorem is referenced by:  omp1eomlem  7038  imasnopn  12699  pw1nct  13575
  Copyright terms: Public domain W3C validator