| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2prde | GIF version | ||
| Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by Jim Kingdon, 11-Jan-2026.) |
| Ref | Expression |
|---|---|
| en2prde | ⊢ (𝑉 ≈ 2o → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2 6971 | . 2 ⊢ (𝑉 ≈ 2o → ∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏}) | |
| 2 | breq1 4085 | . . . . . 6 ⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ≈ 2o ↔ {𝑎, 𝑏} ≈ 2o)) | |
| 3 | pr2ne 7361 | . . . . . . 7 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ({𝑎, 𝑏} ≈ 2o ↔ 𝑎 ≠ 𝑏)) | |
| 4 | 3 | el2v 2805 | . . . . . 6 ⊢ ({𝑎, 𝑏} ≈ 2o ↔ 𝑎 ≠ 𝑏) |
| 5 | 2, 4 | bitrdi 196 | . . . . 5 ⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ≈ 2o ↔ 𝑎 ≠ 𝑏)) |
| 6 | 5 | biimpcd 159 | . . . 4 ⊢ (𝑉 ≈ 2o → (𝑉 = {𝑎, 𝑏} → 𝑎 ≠ 𝑏)) |
| 7 | 6 | ancrd 326 | . . 3 ⊢ (𝑉 ≈ 2o → (𝑉 = {𝑎, 𝑏} → (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
| 8 | 7 | 2eximdv 1928 | . 2 ⊢ (𝑉 ≈ 2o → (∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
| 9 | 1, 8 | mpd 13 | 1 ⊢ (𝑉 ≈ 2o → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ≠ wne 2400 Vcvv 2799 {cpr 3667 class class class wbr 4082 2oc2o 6554 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 |
| This theorem is referenced by: umgredg 15937 |
| Copyright terms: Public domain | W3C validator |