Theorem List for Intuitionistic Logic Explorer - 2801-2900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ceqsex 2801* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro,
10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| |
| Theorem | ceqsexv 2802* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM, 2-Mar-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| |
| Theorem | ceqsexv2d 2803* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv
conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by
SN, 5-Jun-2025.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 |
| |
| Theorem | ceqsex2 2804* |
Elimination of two existential quantifiers, using implicit substitution.
(Contributed by Scott Fenton, 7-Jun-2006.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
| |
| Theorem | ceqsex2v 2805* |
Elimination of two existential quantifiers, using implicit substitution.
(Contributed by Scott Fenton, 7-Jun-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
| |
| Theorem | ceqsex3v 2806* |
Elimination of three existential quantifiers, using implicit
substitution. (Contributed by NM, 16-Aug-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) |
| |
| Theorem | ceqsex4v 2807* |
Elimination of four existential quantifiers, using implicit
substitution. (Contributed by NM, 23-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) |
| |
| Theorem | ceqsex6v 2808* |
Elimination of six existential quantifiers, using implicit substitution.
(Contributed by NM, 21-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ (𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁) |
| |
| Theorem | ceqsex8v 2809* |
Elimination of eight existential quantifiers, using implicit
substitution. (Contributed by NM, 23-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ 𝐺 ∈ V & ⊢ 𝐻 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) |
| |
| Theorem | gencbvex 2810* |
Change of bound variable using implicit substitution. (Contributed by
NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| |
| Theorem | gencbvex2 2811* |
Restatement of gencbvex 2810 with weaker hypotheses. (Contributed by Jeff
Hankins, 6-Dec-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| |
| Theorem | gencbval 2812* |
Change of bound variable using implicit substitution. (Contributed by
NM, 17-May-1996.) (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) |
| |
| Theorem | sbhypf 2813* |
Introduce an explicit substitution into an implicit substitution
hypothesis. See also csbhypf . (Contributed by Raph Levien,
10-Apr-2004.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| |
| Theorem | vtoclgft 2814 |
Closed theorem form of vtoclgf 2822. (Contributed by NM, 17-Feb-2013.)
(Revised by Mario Carneiro, 12-Oct-2016.)
|
| ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) |
| |
| Theorem | vtocldf 2815 |
Implicit substitution of a class for a setvar variable. (Contributed
by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓)
& ⊢ Ⅎ𝑥𝜑
& ⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) |
| |
| Theorem | vtocld 2816* |
Implicit substitution of a class for a setvar variable. (Contributed by
Mario Carneiro, 15-Oct-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) |
| |
| Theorem | vtoclf 2817* |
Implicit substitution of a class for a setvar variable. This is a
generalization of chvar 1771. (Contributed by NM, 30-Aug-1993.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtocl 2818* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 30-Aug-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtocl2 2819* |
Implicit substitution of classes for setvar variables. (Contributed by
NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtocl3 2820* |
Implicit substitution of classes for setvar variables. (Contributed by
NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtoclb 2821* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 23-Dec-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) |
| |
| Theorem | vtoclgf 2822 |
Implicit substitution of a class for a setvar variable, with
bound-variable hypotheses in place of distinct variable restrictions.
(Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro,
10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| |
| Theorem | vtoclg1f 2823* |
Version of vtoclgf 2822 with one nonfreeness hypothesis replaced with
a
disjoint variable condition, thus avoiding dependency on ax-11 1520 and
ax-13 2169. (Contributed by BJ, 1-May-2019.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| |
| Theorem | vtoclg 2824* |
Implicit substitution of a class expression for a setvar variable.
(Contributed by NM, 17-Apr-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| |
| Theorem | vtoclbg 2825* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 29-Apr-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| |
| Theorem | vtocl2gf 2826 |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 25-Apr-1995.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| |
| Theorem | vtocl3gf 2827 |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑧𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑧𝐵
& ⊢ Ⅎ𝑧𝐶
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ Ⅎ𝑧𝜃
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) |
| |
| Theorem | vtocl2g 2828* |
Implicit substitution of 2 classes for 2 setvar variables. (Contributed
by NM, 25-Apr-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| |
| Theorem | vtoclgaf 2829* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| |
| Theorem | vtoclga 2830* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 20-Aug-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| |
| Theorem | vtocl2gaf 2831* |
Implicit substitution of 2 classes for 2 setvar variables. (Contributed
by NM, 10-Aug-2013.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| |
| Theorem | vtocl2ga 2832* |
Implicit substitution of 2 classes for 2 setvar variables. (Contributed
by NM, 20-Aug-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| |
| Theorem | vtocl3gaf 2833* |
Implicit substitution of 3 classes for 3 setvar variables. (Contributed
by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑧𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑧𝐵
& ⊢ Ⅎ𝑧𝐶
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ Ⅎ𝑧𝜃
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) |
| |
| Theorem | vtocl3ga 2834* |
Implicit substitution of 3 classes for 3 setvar variables. (Contributed
by NM, 20-Aug-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| |
| Theorem | vtocleg 2835* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 10-Jan-2004.)
|
| ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
| |
| Theorem | vtoclegft 2836* |
Implicit substitution of a class for a setvar variable. (Closed theorem
version of vtoclef 2837.) (Contributed by NM, 7-Nov-2005.) (Revised
by
Mario Carneiro, 11-Oct-2016.)
|
| ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
| |
| Theorem | vtoclef 2837* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 18-Aug-1993.)
|
| ⊢ Ⅎ𝑥𝜑
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 |
| |
| Theorem | vtocle 2838* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 9-Sep-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 |
| |
| Theorem | vtoclri 2839* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 21-Nov-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ∀𝑥 ∈ 𝐵 𝜑 ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| |
| Theorem | spcimgft 2840 |
A closed version of spcimgf 2844. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| |
| Theorem | spcgft 2841 |
A closed version of spcgf 2846. (Contributed by Andrew Salmon,
6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| |
| Theorem | spcimegft 2842 |
A closed version of spcimegf 2845. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
| |
| Theorem | spcegft 2843 |
A closed version of spcegf 2847. (Contributed by Jim Kingdon,
22-Jun-2018.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
| |
| Theorem | spcimgf 2844 |
Rule of specialization, using implicit substitution. Compare Theorem
7.3 of [Quine] p. 44. (Contributed by
Mario Carneiro, 4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| |
| Theorem | spcimegf 2845 |
Existential specialization, using implicit substitution. (Contributed
by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| |
| Theorem | spcgf 2846 |
Rule of specialization, using implicit substitution. Compare Theorem
7.3 of [Quine] p. 44. (Contributed by NM,
2-Feb-1997.) (Revised by
Andrew Salmon, 12-Aug-2011.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| |
| Theorem | spcegf 2847 |
Existential specialization, using implicit substitution. (Contributed
by NM, 2-Feb-1997.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| |
| Theorem | spcimdv 2848* |
Restricted specialization, using implicit substitution. (Contributed
by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| |
| Theorem | spcdv 2849* |
Rule of specialization, using implicit substitution. Analogous to
rspcdv 2871. (Contributed by David Moews, 1-May-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| |
| Theorem | spcimedv 2850* |
Restricted existential specialization, using implicit substitution.
(Contributed by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| |
| Theorem | spcgv 2851* |
Rule of specialization, using implicit substitution. Compare Theorem
7.3 of [Quine] p. 44. (Contributed by NM,
22-Jun-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| |
| Theorem | spcegv 2852* |
Existential specialization, using implicit substitution. (Contributed
by NM, 14-Aug-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| |
| Theorem | spcedv 2853* |
Existential specialization, using implicit substitution, deduction
version. (Contributed by RP, 12-Aug-2020.)
|
| ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝜑 → 𝜒)
& ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) |
| |
| Theorem | spc2egv 2854* |
Existential specialization with 2 quantifiers, using implicit
substitution. (Contributed by NM, 3-Aug-1995.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
| |
| Theorem | spc2gv 2855* |
Specialization with 2 quantifiers, using implicit substitution.
(Contributed by NM, 27-Apr-2004.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
| |
| Theorem | spc3egv 2856* |
Existential specialization with 3 quantifiers, using implicit
substitution. (Contributed by NM, 12-May-2008.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) |
| |
| Theorem | spc3gv 2857* |
Specialization with 3 quantifiers, using implicit substitution.
(Contributed by NM, 12-May-2008.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |
| |
| Theorem | spcv 2858* |
Rule of specialization, using implicit substitution. (Contributed by
NM, 22-Jun-1994.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) |
| |
| Theorem | spcev 2859* |
Existential specialization, using implicit substitution. (Contributed
by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥𝜑) |
| |
| Theorem | spc2ev 2860* |
Existential specialization, using implicit substitution. (Contributed
by NM, 3-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
| |
| Theorem | rspct 2861* |
A closed version of rspc 2862. (Contributed by Andrew Salmon,
6-Jun-2011.)
|
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) |
| |
| Theorem | rspc 2862* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| |
| Theorem | rspce 2863* |
Restricted existential specialization, using implicit substitution.
(Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro,
11-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
| |
| Theorem | rspcv 2864* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 26-May-1998.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| |
| Theorem | rspccv 2865* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 2-Feb-2006.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| |
| Theorem | rspcva 2866* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 13-Sep-2005.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → 𝜓) |
| |
| Theorem | rspccva 2867* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
| |
| Theorem | rspcev 2868* |
Restricted existential specialization, using implicit substitution.
(Contributed by NM, 26-May-1998.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
| |
| Theorem | rspcimdv 2869* |
Restricted specialization, using implicit substitution. (Contributed
by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| |
| Theorem | rspcimedv 2870* |
Restricted existential specialization, using implicit substitution.
(Contributed by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| |
| Theorem | rspcdv 2871* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| |
| Theorem | rspcedv 2872* |
Restricted existential specialization, using implicit substitution.
(Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro,
4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| |
| Theorem | rspcdva 2873* |
Restricted specialization, using implicit substitution. (Contributed by
Thierry Arnoux, 21-Jun-2020.)
|
| ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)
& ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝜒) |
| |
| Theorem | rspcedvd 2874* |
Restricted existential specialization, using implicit substitution.
Variant of rspcedv 2872. (Contributed by AV, 27-Nov-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rspcime 2875* |
Prove a restricted existential. (Contributed by Rohan Ridenour,
3-Aug-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓)
& ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rspceaimv 2876* |
Restricted existential specialization of a universally quantified
implication. (Contributed by BJ, 24-Aug-2022.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| |
| Theorem | rspcedeq1vd 2877* |
Restricted existential specialization, using implicit substitution.
Variant of rspcedvd 2874 for equations, in which the left hand side
depends on the quantified variable. (Contributed by AV,
24-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| |
| Theorem | rspcedeq2vd 2878* |
Restricted existential specialization, using implicit substitution.
Variant of rspcedvd 2874 for equations, in which the right hand side
depends on the quantified variable. (Contributed by AV,
24-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| |
| Theorem | rspc2 2879* |
2-variable restricted specialization, using implicit substitution.
(Contributed by NM, 9-Nov-2012.)
|
| ⊢ Ⅎ𝑥𝜒
& ⊢ Ⅎ𝑦𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| |
| Theorem | rspc2gv 2880* |
Restricted specialization with two quantifiers, using implicit
substitution. (Contributed by BJ, 2-Dec-2021.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜑 → 𝜓)) |
| |
| Theorem | rspc2v 2881* |
2-variable restricted specialization, using implicit substitution.
(Contributed by NM, 13-Sep-1999.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| |
| Theorem | rspc2va 2882* |
2-variable restricted specialization, using implicit substitution.
(Contributed by NM, 18-Jun-2014.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| |
| Theorem | rspc2ev 2883* |
2-variable restricted existential specialization, using implicit
substitution. (Contributed by NM, 16-Oct-1999.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
| |
| Theorem | rspc3v 2884* |
3-variable restricted specialization, using implicit substitution.
(Contributed by NM, 10-May-2005.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| |
| Theorem | rspc3ev 2885* |
3-variable restricted existentional specialization, using implicit
substitution. (Contributed by NM, 25-Jul-2012.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| |
| Theorem | rspceeqv 2886* |
Restricted existential specialization in an equality, using implicit
substitution. (Contributed by BJ, 2-Sep-2022.)
|
| ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| |
| Theorem | eqvinc 2887* |
A variable introduction law for class equality. (Contributed by NM,
14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| |
| Theorem | eqvincg 2888* |
A variable introduction law for class equality, deduction version.
(Contributed by Thierry Arnoux, 2-Mar-2017.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| |
| Theorem | eqvincf 2889 |
A variable introduction law for class equality, using bound-variable
hypotheses instead of distinct variable conditions. (Contributed by NM,
14-Sep-2003.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵
& ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| |
| Theorem | alexeq 2890* |
Two ways to express substitution of 𝐴 for 𝑥 in 𝜑.
(Contributed by NM, 2-Mar-1995.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| |
| Theorem | ceqex 2891* |
Equality implies equivalence with substitution. (Contributed by NM,
2-Mar-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| |
| Theorem | ceqsexg 2892* |
A representation of explicit substitution of a class for a variable,
inferred from an implicit substitution hypothesis. (Contributed by NM,
11-Oct-2004.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsexgv 2893* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM, 29-Dec-1996.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsrexv 2894* |
Elimination of a restricted existential quantifier, using implicit
substitution. (Contributed by NM, 30-Apr-2004.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsrexbv 2895* |
Elimination of a restricted existential quantifier, using implicit
substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| |
| Theorem | ceqsrex2v 2896* |
Elimination of a restricted existential quantifier, using implicit
substitution. (Contributed by NM, 29-Oct-2005.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒)) |
| |
| Theorem | clel2 2897* |
An alternate definition of class membership when the class is a set.
(Contributed by NM, 18-Aug-1993.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| |
| Theorem | clel3g 2898* |
An alternate definition of class membership when the class is a set.
(Contributed by NM, 13-Aug-2005.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
| |
| Theorem | clel3 2899* |
An alternate definition of class membership when the class is a set.
(Contributed by NM, 18-Aug-1993.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥)) |
| |
| Theorem | clel4 2900* |
An alternate definition of class membership when the class is a set.
(Contributed by NM, 18-Aug-1993.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |