HomeHome Intuitionistic Logic Explorer
Theorem List (p. 29 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2801-2900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvtocleg 2801* Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
(𝑥 = 𝐴𝜑)       (𝐴𝑉𝜑)
 
Theoremvtoclegft 2802* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2803.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
 
Theoremvtoclef 2803* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑    &   𝐴 ∈ V    &   (𝑥 = 𝐴𝜑)       𝜑
 
Theoremvtocle 2804* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝜑)       𝜑
 
Theoremvtoclri 2805* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝑥𝐵 𝜑       (𝐴𝐵𝜓)
 
Theoremspcimgft 2806 A closed version of spcimgf 2810. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
 
Theoremspcgft 2807 A closed version of spcgf 2812. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
 
Theoremspcimegft 2808 A closed version of spcimegf 2811. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
 
Theoremspcegft 2809 A closed version of spcegf 2813. (Contributed by Jim Kingdon, 22-Jun-2018.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
 
Theoremspcimgf 2810 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝜑𝜓))
 
Theoremspcimegf 2811 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜓𝜑))       (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 
Theoremspcgf 2812 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝜑𝜓))
 
Theoremspcegf 2813 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 
Theoremspcimdv 2814* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theoremspcdv 2815* Rule of specialization, using implicit substitution. Analogous to rspcdv 2837. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theoremspcimedv 2816* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜒𝜓))       (𝜑 → (𝜒 → ∃𝑥𝜓))
 
Theoremspcgv 2817* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝜑𝜓))
 
Theoremspcegv 2818* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 
Theoremspcedv 2819* Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.)
(𝜑𝑋 ∈ V)    &   (𝜑𝜒)    &   (𝑥 = 𝑋 → (𝜓𝜒))       (𝜑 → ∃𝑥𝜓)
 
Theoremspc2egv 2820* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦𝜑))
 
Theoremspc2gv 2821* Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
 
Theoremspc3egv 2822* Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
 
Theoremspc3gv 2823* Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥𝑦𝑧𝜑𝜓))
 
Theoremspcv 2824* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspcev 2825* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝜓 → ∃𝑥𝜑)
 
Theoremspc2ev 2826* Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       (𝜓 → ∃𝑥𝑦𝜑)
 
Theoremrspct 2827* A closed version of rspc 2828. (Contributed by Andrew Salmon, 6-Jun-2011.)
𝑥𝜓       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
 
Theoremrspc 2828* Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
 
Theoremrspce 2829* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoremrspcv 2830* Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
 
Theoremrspccv 2831* Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
(𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
 
Theoremrspcva 2832* Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
 
Theoremrspccva 2833* Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((∀𝑥𝐵 𝜑𝐴𝐵) → 𝜓)
 
Theoremrspcev 2834* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoremrspcimdv 2835* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓𝜒))
 
Theoremrspcimedv 2836* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜒𝜓))       (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
 
Theoremrspcdv 2837* Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐵 𝜓𝜒))
 
Theoremrspcedv 2838* Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
 
Theoremrspcdva 2839* Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.)
(𝑥 = 𝐶 → (𝜓𝜒))    &   (𝜑 → ∀𝑥𝐴 𝜓)    &   (𝜑𝐶𝐴)       (𝜑𝜒)
 
Theoremrspcedvd 2840* Restricted existential specialization, using implicit substitution. Variant of rspcedv 2838. (Contributed by AV, 27-Nov-2019.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   (𝜑𝜒)       (𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremrspcime 2841* Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
((𝜑𝑥 = 𝐴) → 𝜓)    &   (𝜑𝐴𝐵)       (𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremrspceaimv 2842* Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
 
Theoremrspcedeq1vd 2843* Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2840 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)       (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
 
Theoremrspcedeq2vd 2844* Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2840 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)       (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
 
Theoremrspc2 2845* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.)
𝑥𝜒    &   𝑦𝜓    &   (𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))       ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 𝜑𝜓))
 
Theoremrspc2gv 2846* Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
 
Theoremrspc2v 2847* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))       ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 𝜑𝜓))
 
Theoremrspc2va 2848* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))       (((𝐴𝐶𝐵𝐷) ∧ ∀𝑥𝐶𝑦𝐷 𝜑) → 𝜓)
 
Theoremrspc2ev 2849* 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))       ((𝐴𝐶𝐵𝐷𝜓) → ∃𝑥𝐶𝑦𝐷 𝜑)
 
Theoremrspc3v 2850* 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜃))    &   (𝑧 = 𝐶 → (𝜃𝜓))       ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
 
Theoremrspc3ev 2851* 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜃))    &   (𝑧 = 𝐶 → (𝜃𝜓))       (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
 
Theoremrspceeqv 2852* Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
(𝑥 = 𝐴𝐶 = 𝐷)       ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
 
Theoremeqvinc 2853* A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V       (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
 
Theoremeqvincg 2854* A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.)
(𝐴𝑉 → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
 
Theoremeqvincf 2855 A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.)
𝑥𝐴    &   𝑥𝐵    &   𝐴 ∈ V       (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
 
Theoremalexeq 2856* Two ways to express substitution of 𝐴 for 𝑥 in 𝜑. (Contributed by NM, 2-Mar-1995.)
𝐴 ∈ V       (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
 
Theoremceqex 2857* Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
(𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
 
Theoremceqsexg 2858* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsexgv 2859* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsrexv 2860* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsrexbv 2861* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
(𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
 
Theoremceqsrex2v 2862* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
 
Theoremclel2 2863* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
𝐴 ∈ V       (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
 
Theoremclel3g 2864* An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
(𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
 
Theoremclel3 2865* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
𝐵 ∈ V       (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥))
 
Theoremclel4 2866* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
𝐵 ∈ V       (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
 
Theoremclel5 2867* Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
(𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
 
Theorempm13.183 2868* Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
(𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
 
Theoremrr19.3v 2869* Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 25-Oct-2012.)
(∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
 
Theoremrr19.28v 2870* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
(∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
 
Theoremelabgt 2871* Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2876.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 
Theoremelabgf 2872 Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 
Theoremelabf 2873* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
 
Theoremelab 2874* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
 
Theoremelabd 2875* Explicit demonstration the class {𝑥𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.)
(𝜑𝑋 ∈ V)    &   (𝜑𝜒)    &   (𝑥 = 𝑋 → (𝜓𝜒))       (𝜑 → ∃𝑥𝜓)
 
Theoremelabg 2876* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 
Theoremelab2g 2877* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝐵 = {𝑥𝜑}       (𝐴𝑉 → (𝐴𝐵𝜓))
 
Theoremelab2 2878* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝐵 = {𝑥𝜑}       (𝐴𝐵𝜓)
 
Theoremelab4g 2879* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝐵 = {𝑥𝜑}       (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
 
Theoremelab3gf 2880 Membership in a class abstraction, with a weaker antecedent than elabgf 2872. (Contributed by NM, 6-Sep-2011.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 
Theoremelab3g 2881* Membership in a class abstraction, with a weaker antecedent than elabg 2876. (Contributed by NM, 29-Aug-2006.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 
Theoremelab3 2882* Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.)
(𝜓𝐴 ∈ V)    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
 
Theoremelrabi 2883* Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
(𝐴 ∈ {𝑥𝑉𝜑} → 𝐴𝑉)
 
Theoremelrabf 2884 Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
 
Theoremelrab3t 2885* Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 2887.) (Contributed by Thierry Arnoux, 31-Aug-2017.)
((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
 
Theoremelrab 2886* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
 
Theoremelrab3 2887* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
 
Theoremelrabd 2888* Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2886. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝑥 = 𝐴 → (𝜓𝜒))    &   (𝜑𝐴𝐵)    &   (𝜑𝜒)       (𝜑𝐴 ∈ {𝑥𝐵𝜓})
 
Theoremelrab2 2889* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝐶 = {𝑥𝐵𝜑}       (𝐴𝐶 ↔ (𝐴𝐵𝜓))
 
Theoremralab 2890* Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
 
Theoremralrab 2891* Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
 
Theoremrexab 2892* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
 
Theoremrexrab 2893* Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
 
Theoremralab2 2894* Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑥 = 𝑦 → (𝜓𝜒))       (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑦(𝜑𝜒))
 
Theoremralrab2 2895* Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑥 = 𝑦 → (𝜓𝜒))       (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
 
Theoremrexab2 2896* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑥 = 𝑦 → (𝜓𝜒))       (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
 
Theoremrexrab2 2897* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑥 = 𝑦 → (𝜓𝜒))       (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
 
Theoremabidnf 2898* Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
(𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
 
Theoremdedhb 2899* A deduction theorem for converting the inference 𝑥𝐴 => 𝜑 into a closed theorem. Use nfa1 1534 and nfab 2317 to eliminate the hypothesis of the substitution instance 𝜓 of the inference. For converting the inference form into a deduction form, abidnf 2898 is useful. (Contributed by NM, 8-Dec-2006.)
(𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))    &   𝜓       (𝑥𝐴𝜑)
 
Theoremeqeu 2900* A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >