Theorem List for Intuitionistic Logic Explorer - 2801-2900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | rabab 2801 |
A class abstraction restricted to the universe is unrestricted.
(Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.)
|
| ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
| |
| Theorem | ralcom4 2802* |
Commutation of restricted and unrestricted universal quantifiers.
(Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.)
|
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| |
| Theorem | rexcom4 2803* |
Commutation of restricted and unrestricted existential quantifiers.
(Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon,
8-Jun-2011.)
|
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| |
| Theorem | rexcom4a 2804* |
Specialized existential commutation lemma. (Contributed by Jeff Madsen,
1-Jun-2011.)
|
| ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
| |
| Theorem | rexcom4b 2805* |
Specialized existential commutation lemma. (Contributed by Jeff Madsen,
1-Jun-2011.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| |
| Theorem | ceqsalt 2806* |
Closed theorem version of ceqsalg 2808. (Contributed by NM, 28-Feb-2013.)
(Revised by Mario Carneiro, 10-Oct-2016.)
|
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsralt 2807* |
Restricted quantifier version of ceqsalt 2806. (Contributed by NM,
28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
|
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsalg 2808* |
A representation of explicit substitution of a class for a variable,
inferred from an implicit substitution hypothesis. (Contributed by NM,
29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsal 2809* |
A representation of explicit substitution of a class for a variable,
inferred from an implicit substitution hypothesis. (Contributed by NM,
18-Aug-1993.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| |
| Theorem | ceqsalv 2810* |
A representation of explicit substitution of a class for a variable,
inferred from an implicit substitution hypothesis. (Contributed by NM,
18-Aug-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| |
| Theorem | ceqsralv 2811* |
Restricted quantifier version of ceqsalv 2810. (Contributed by NM,
21-Jun-2013.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| |
| Theorem | gencl 2812* |
Implicit substitution for class with embedded variable. (Contributed by
NM, 17-May-1996.)
|
| ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) & ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (𝜃 → 𝜓) |
| |
| Theorem | 2gencl 2813* |
Implicit substitution for class with embedded variable. (Contributed by
NM, 17-May-1996.)
|
| ⊢ (𝐶 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐶)
& ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐷)
& ⊢ (𝐴 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐷 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → 𝜒) |
| |
| Theorem | 3gencl 2814* |
Implicit substitution for class with embedded variable. (Contributed by
NM, 17-May-1996.)
|
| ⊢ (𝐷 ∈ 𝑆 ↔ ∃𝑥 ∈ 𝑅 𝐴 = 𝐷)
& ⊢ (𝐹 ∈ 𝑆 ↔ ∃𝑦 ∈ 𝑅 𝐵 = 𝐹)
& ⊢ (𝐺 ∈ 𝑆 ↔ ∃𝑧 ∈ 𝑅 𝐶 = 𝐺)
& ⊢ (𝐴 = 𝐷 → (𝜑 ↔ 𝜓)) & ⊢ (𝐵 = 𝐹 → (𝜓 ↔ 𝜒)) & ⊢ (𝐶 = 𝐺 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝜑) ⇒ ⊢ ((𝐷 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝜃) |
| |
| Theorem | cgsexg 2815* |
Implicit substitution inference for general classes. (Contributed by
NM, 26-Aug-2007.)
|
| ⊢ (𝑥 = 𝐴 → 𝜒)
& ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| |
| Theorem | cgsex2g 2816* |
Implicit substitution inference for general classes. (Contributed by
NM, 26-Jul-1995.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒)
& ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| |
| Theorem | cgsex4g 2817* |
An implicit substitution inference for 4 general classes. (Contributed
by NM, 5-Aug-1995.)
|
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → 𝜒)
& ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| |
| Theorem | ceqsex 2818* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro,
10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| |
| Theorem | ceqsexv 2819* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by NM, 2-Mar-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| |
| Theorem | ceqsexv2d 2820* |
Elimination of an existential quantifier, using implicit substitution.
(Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv
conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by
SN, 5-Jun-2025.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 |
| |
| Theorem | ceqsex2 2821* |
Elimination of two existential quantifiers, using implicit substitution.
(Contributed by Scott Fenton, 7-Jun-2006.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
| |
| Theorem | ceqsex2v 2822* |
Elimination of two existential quantifiers, using implicit substitution.
(Contributed by Scott Fenton, 7-Jun-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
| |
| Theorem | ceqsex3v 2823* |
Elimination of three existential quantifiers, using implicit
substitution. (Contributed by NM, 16-Aug-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) |
| |
| Theorem | ceqsex4v 2824* |
Elimination of four existential quantifiers, using implicit
substitution. (Contributed by NM, 23-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) |
| |
| Theorem | ceqsex6v 2825* |
Elimination of six existential quantifiers, using implicit substitution.
(Contributed by NM, 21-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ (𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁) |
| |
| Theorem | ceqsex8v 2826* |
Elimination of eight existential quantifiers, using implicit
substitution. (Contributed by NM, 23-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V & ⊢ 𝐺 ∈ V & ⊢ 𝐻 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) |
| |
| Theorem | gencbvex 2827* |
Change of bound variable using implicit substitution. (Contributed by
NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| |
| Theorem | gencbvex2 2828* |
Restatement of gencbvex 2827 with weaker hypotheses. (Contributed by Jeff
Hankins, 6-Dec-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| |
| Theorem | gencbval 2829* |
Change of bound variable using implicit substitution. (Contributed by
NM, 17-May-1996.) (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) & ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) ⇒ ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) |
| |
| Theorem | sbhypf 2830* |
Introduce an explicit substitution into an implicit substitution
hypothesis. See also csbhypf . (Contributed by Raph Levien,
10-Apr-2004.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| |
| Theorem | vtoclgft 2831 |
Closed theorem form of vtoclgf 2839. (Contributed by NM, 17-Feb-2013.)
(Revised by Mario Carneiro, 12-Oct-2016.)
|
| ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) |
| |
| Theorem | vtocldf 2832 |
Implicit substitution of a class for a setvar variable. (Contributed
by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓)
& ⊢ Ⅎ𝑥𝜑
& ⊢ (𝜑 → Ⅎ𝑥𝐴)
& ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → 𝜒) |
| |
| Theorem | vtocld 2833* |
Implicit substitution of a class for a setvar variable. (Contributed by
Mario Carneiro, 15-Oct-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) |
| |
| Theorem | vtoclf 2834* |
Implicit substitution of a class for a setvar variable. This is a
generalization of chvar 1783. (Contributed by NM, 30-Aug-1993.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtocl 2835* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 30-Aug-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtocl2 2836* |
Implicit substitution of classes for setvar variables. (Contributed by
NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtocl3 2837* |
Implicit substitution of classes for setvar variables. (Contributed by
NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 |
| |
| Theorem | vtoclb 2838* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 23-Dec-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) |
| |
| Theorem | vtoclgf 2839 |
Implicit substitution of a class for a setvar variable, with
bound-variable hypotheses in place of distinct variable restrictions.
(Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro,
10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| |
| Theorem | vtoclg1f 2840* |
Version of vtoclgf 2839 with one nonfreeness hypothesis replaced with
a
disjoint variable condition, thus avoiding dependency on ax-11 1532 and
ax-13 2182. (Contributed by BJ, 1-May-2019.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| |
| Theorem | vtoclg 2841* |
Implicit substitution of a class expression for a setvar variable.
(Contributed by NM, 17-Apr-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| |
| Theorem | vtoclbg 2842* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 29-Apr-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
| |
| Theorem | vtocl2gf 2843 |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 25-Apr-1995.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| |
| Theorem | vtocl3gf 2844 |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑧𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑧𝐵
& ⊢ Ⅎ𝑧𝐶
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ Ⅎ𝑧𝜃
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) |
| |
| Theorem | vtocl2g 2845* |
Implicit substitution of 2 classes for 2 setvar variables. (Contributed
by NM, 25-Apr-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| |
| Theorem | vtoclgaf 2846* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| |
| Theorem | vtoclga 2847* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 20-Aug-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| |
| Theorem | vtocl2gaf 2848* |
Implicit substitution of 2 classes for 2 setvar variables. (Contributed
by NM, 10-Aug-2013.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| |
| Theorem | vtocl2ga 2849* |
Implicit substitution of 2 classes for 2 setvar variables. (Contributed
by NM, 20-Aug-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| |
| Theorem | vtocl3gaf 2850* |
Implicit substitution of 3 classes for 3 setvar variables. (Contributed
by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑧𝐴
& ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑧𝐵
& ⊢ Ⅎ𝑧𝐶
& ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑦𝜒
& ⊢ Ⅎ𝑧𝜃
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) |
| |
| Theorem | vtocl3ga 2851* |
Implicit substitution of 3 classes for 3 setvar variables. (Contributed
by NM, 20-Aug-1995.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| |
| Theorem | vtocl4g 2852* |
Implicit substitution of 4 classes for 4 setvar variables. (Contributed
by AV, 22-Jan-2019.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |
| |
| Theorem | vtocl4ga 2853* |
Implicit substitution of 4 classes for 4 setvar variables. (Contributed
by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜌)) & ⊢ (𝑤 = 𝐷 → (𝜌 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇)) → 𝜑) ⇒ ⊢ (((𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇)) → 𝜃) |
| |
| Theorem | vtocleg 2854* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 10-Jan-2004.)
|
| ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
| |
| Theorem | vtoclegft 2855* |
Implicit substitution of a class for a setvar variable. (Closed theorem
version of vtoclef 2856.) (Contributed by NM, 7-Nov-2005.) (Revised
by
Mario Carneiro, 11-Oct-2016.)
|
| ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
| |
| Theorem | vtoclef 2856* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 18-Aug-1993.)
|
| ⊢ Ⅎ𝑥𝜑
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 |
| |
| Theorem | vtocle 2857* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 9-Sep-1993.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ 𝜑 |
| |
| Theorem | vtoclri 2858* |
Implicit substitution of a class for a setvar variable. (Contributed by
NM, 21-Nov-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ∀𝑥 ∈ 𝐵 𝜑 ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| |
| Theorem | spcimgft 2859 |
A closed version of spcimgf 2863. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| |
| Theorem | spcgft 2860 |
A closed version of spcgf 2865. (Contributed by Andrew Salmon,
6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
| |
| Theorem | spcimegft 2861 |
A closed version of spcimegf 2864. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
| |
| Theorem | spcegft 2862 |
A closed version of spcegf 2866. (Contributed by Jim Kingdon,
22-Jun-2018.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
| |
| Theorem | spcimgf 2863 |
Rule of specialization, using implicit substitution. Compare Theorem
7.3 of [Quine] p. 44. (Contributed by
Mario Carneiro, 4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| |
| Theorem | spcimegf 2864 |
Existential specialization, using implicit substitution. (Contributed
by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| |
| Theorem | spcgf 2865 |
Rule of specialization, using implicit substitution. Compare Theorem
7.3 of [Quine] p. 44. (Contributed by NM,
2-Feb-1997.) (Revised by
Andrew Salmon, 12-Aug-2011.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| |
| Theorem | spcegf 2866 |
Existential specialization, using implicit substitution. (Contributed
by NM, 2-Feb-1997.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| |
| Theorem | spcimdv 2867* |
Restricted specialization, using implicit substitution. (Contributed
by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| |
| Theorem | spcdv 2868* |
Rule of specialization, using implicit substitution. Analogous to
rspcdv 2890. (Contributed by David Moews, 1-May-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| |
| Theorem | spcimedv 2869* |
Restricted existential specialization, using implicit substitution.
(Contributed by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| |
| Theorem | spcgv 2870* |
Rule of specialization, using implicit substitution. Compare Theorem
7.3 of [Quine] p. 44. (Contributed by NM,
22-Jun-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| |
| Theorem | spcegv 2871* |
Existential specialization, using implicit substitution. (Contributed
by NM, 14-Aug-1994.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| |
| Theorem | spcedv 2872* |
Existential specialization, using implicit substitution, deduction
version. (Contributed by RP, 12-Aug-2020.)
|
| ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝜑 → 𝜒)
& ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) |
| |
| Theorem | spc2egv 2873* |
Existential specialization with 2 quantifiers, using implicit
substitution. (Contributed by NM, 3-Aug-1995.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
| |
| Theorem | spc2gv 2874* |
Specialization with 2 quantifiers, using implicit substitution.
(Contributed by NM, 27-Apr-2004.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
| |
| Theorem | spc3egv 2875* |
Existential specialization with 3 quantifiers, using implicit
substitution. (Contributed by NM, 12-May-2008.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) |
| |
| Theorem | spc3gv 2876* |
Specialization with 3 quantifiers, using implicit substitution.
(Contributed by NM, 12-May-2008.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |
| |
| Theorem | spcv 2877* |
Rule of specialization, using implicit substitution. (Contributed by
NM, 22-Jun-1994.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) |
| |
| Theorem | spcev 2878* |
Existential specialization, using implicit substitution. (Contributed
by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥𝜑) |
| |
| Theorem | spc2ev 2879* |
Existential specialization, using implicit substitution. (Contributed
by NM, 3-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
| |
| Theorem | rspct 2880* |
A closed version of rspc 2881. (Contributed by Andrew Salmon,
6-Jun-2011.)
|
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) |
| |
| Theorem | rspc 2881* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| |
| Theorem | rspce 2882* |
Restricted existential specialization, using implicit substitution.
(Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro,
11-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
| |
| Theorem | rspcv 2883* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 26-May-1998.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| |
| Theorem | rspccv 2884* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 2-Feb-2006.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| |
| Theorem | rspcva 2885* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 13-Sep-2005.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → 𝜓) |
| |
| Theorem | rspccva 2886* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
| |
| Theorem | rspcev 2887* |
Restricted existential specialization, using implicit substitution.
(Contributed by NM, 26-May-1998.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
| |
| Theorem | rspcimdv 2888* |
Restricted specialization, using implicit substitution. (Contributed
by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| |
| Theorem | rspcimedv 2889* |
Restricted existential specialization, using implicit substitution.
(Contributed by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| |
| Theorem | rspcdv 2890* |
Restricted specialization, using implicit substitution. (Contributed by
NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| |
| Theorem | rspcedv 2891* |
Restricted existential specialization, using implicit substitution.
(Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro,
4-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| |
| Theorem | rspcdva 2892* |
Restricted specialization, using implicit substitution. (Contributed by
Thierry Arnoux, 21-Jun-2020.)
|
| ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)
& ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝜒) |
| |
| Theorem | rspcedvd 2893* |
Restricted existential specialization, using implicit substitution.
Variant of rspcedv 2891. (Contributed by AV, 27-Nov-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rspcime 2894* |
Prove a restricted existential. (Contributed by Rohan Ridenour,
3-Aug-2023.)
|
| ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓)
& ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| |
| Theorem | rspceaimv 2895* |
Restricted existential specialization of a universally quantified
implication. (Contributed by BJ, 24-Aug-2022.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| |
| Theorem | rspcedeq1vd 2896* |
Restricted existential specialization, using implicit substitution.
Variant of rspcedvd 2893 for equations, in which the left hand side
depends on the quantified variable. (Contributed by AV,
24-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| |
| Theorem | rspcedeq2vd 2897* |
Restricted existential specialization, using implicit substitution.
Variant of rspcedvd 2893 for equations, in which the right hand side
depends on the quantified variable. (Contributed by AV,
24-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| |
| Theorem | rspc2 2898* |
2-variable restricted specialization, using implicit substitution.
(Contributed by NM, 9-Nov-2012.)
|
| ⊢ Ⅎ𝑥𝜒
& ⊢ Ⅎ𝑦𝜓
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| |
| Theorem | rspc2gv 2899* |
Restricted specialization with two quantifiers, using implicit
substitution. (Contributed by BJ, 2-Dec-2021.)
|
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜑 → 𝜓)) |
| |
| Theorem | rspc2v 2900* |
2-variable restricted specialization, using implicit substitution.
(Contributed by NM, 13-Sep-1999.)
|
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |