Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → 𝜒) |
3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan2 284 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 dcor 920 bm1.1 2142 eqtr3 2177 elnelne1 2431 elnelne2 2432 morex 2896 reuss2 3387 reupick 3391 rabsneu 3632 opabss 4028 triun 4075 poirr 4266 wepo 4318 wetrep 4319 rexxfrd 4421 reg3exmidlemwe 4536 nnsuc 4573 fnfco 5341 fun11iun 5432 fnressn 5650 fvpr1g 5670 fvtp1g 5672 fvtp3g 5674 fvtp3 5677 f1mpt 5716 caovlem2d 6007 offval 6033 dfoprab3 6133 1stconst 6162 2ndconst 6163 poxp 6173 tfrlemisucaccv 6266 tfr1onlemsucaccv 6282 tfrcllemsucaccv 6295 fiintim 6866 addclpi 7230 addnidpig 7239 reapmul1 8453 nnnn0addcl 9103 un0addcl 9106 un0mulcl 9107 zltnle 9196 nn0ge0div 9234 uzind3 9260 uzind4 9482 ltsubrp 9579 ltaddrp 9580 xrlttr 9684 xrltso 9685 xltnegi 9721 xaddnemnf 9743 xaddnepnf 9744 xaddcom 9747 xnegdi 9754 xsubge0 9767 fzind2 10120 qltnle 10127 qbtwnxr 10139 exp3vallem 10402 expp1 10408 expnegap0 10409 expcllem 10412 mulexpzap 10441 expaddzap 10445 expmulzap 10447 hashunlem 10660 shftf 10712 sqrtdiv 10924 mulcn2 11191 summodclem2 11261 fsum3 11266 cvgratz 11411 prodmodclem2 11456 zproddc 11458 prodsnf 11471 dvdsflip 11724 dvdsfac 11733 lcmgcdlem 11934 rpexp1i 12008 hashdvds 12073 hashgcdlem 12090 phisum 12092 lmss 12606 xmetrtri 12736 blssioo 12905 divcnap 12915 dedekindicc 12971 dvidlemap 13020 dvrecap 13037 dveflem 13047 bj-bdfindes 13484 bj-findes 13516 |
Copyright terms: Public domain | W3C validator |