![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜒) |
3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anb 291 dcor 936 bm1.1 2173 eqtr3 2208 elnelne1 2463 elnelne2 2464 morex 2935 reuss2 3429 reupick 3433 rabsneu 3679 opabss 4081 triun 4128 poirr 4321 wepo 4373 wetrep 4374 rexxfrd 4477 reg3exmidlemwe 4592 nnsuc 4629 fnfco 5404 fun11iun 5496 fnressn 5717 fvpr1g 5737 fvtp1g 5739 fvtp3g 5741 fvtp3 5744 f1mpt 5787 caovlem2d 6083 offval 6107 dfoprab3 6209 1stconst 6239 2ndconst 6240 poxp 6250 tfrlemisucaccv 6343 tfr1onlemsucaccv 6359 tfrcllemsucaccv 6372 fiintim 6945 addclpi 7343 addnidpig 7352 reapmul1 8569 nnnn0addcl 9223 un0addcl 9226 un0mulcl 9227 zltnle 9316 nn0ge0div 9357 uzind3 9383 uzind4 9605 ltsubrp 9707 ltaddrp 9708 xrlttr 9812 xrltso 9813 xltnegi 9852 xaddnemnf 9874 xaddnepnf 9875 xaddcom 9878 xnegdi 9885 xsubge0 9898 fzind2 10256 qltnle 10263 qbtwnxr 10275 exp3vallem 10538 expp1 10544 expnegap0 10545 expcllem 10548 mulexpzap 10577 expaddzap 10581 expmulzap 10583 hashunlem 10801 shftf 10856 sqrtdiv 11068 mulcn2 11337 summodclem2 11407 fsum3 11412 cvgratz 11557 prodmodclem2 11602 zproddc 11604 prodsnf 11617 dvdsflip 11874 dvdsfac 11883 lcmgcdlem 12094 rpexp1i 12171 hashdvds 12238 hashgcdlem 12255 phisum 12257 pcqcl 12323 pcid 12340 ssnnctlemct 12464 issubmd 12891 grpinvnzcl 12981 mulgneg 13045 mulgnn0z 13054 01eq0ring 13496 lmss 14129 xmetrtri 14259 blssioo 14428 divcnap 14438 dedekindicc 14494 dvidlemap 14543 dvrecap 14560 dveflem 14570 lgsval3 14802 lgsdir2 14817 2sqlem6 14850 bj-bdfindes 15084 bj-findes 15116 |
Copyright terms: Public domain | W3C validator |