Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → 𝜒) |
3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan2 284 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 dcor 925 bm1.1 2150 eqtr3 2185 elnelne1 2439 elnelne2 2440 morex 2909 reuss2 3401 reupick 3405 rabsneu 3648 opabss 4045 triun 4092 poirr 4284 wepo 4336 wetrep 4337 rexxfrd 4440 reg3exmidlemwe 4555 nnsuc 4592 fnfco 5361 fun11iun 5452 fnressn 5670 fvpr1g 5690 fvtp1g 5692 fvtp3g 5694 fvtp3 5697 f1mpt 5738 caovlem2d 6030 offval 6056 dfoprab3 6156 1stconst 6185 2ndconst 6186 poxp 6196 tfrlemisucaccv 6289 tfr1onlemsucaccv 6305 tfrcllemsucaccv 6318 fiintim 6890 addclpi 7264 addnidpig 7273 reapmul1 8489 nnnn0addcl 9140 un0addcl 9143 un0mulcl 9144 zltnle 9233 nn0ge0div 9274 uzind3 9300 uzind4 9522 ltsubrp 9622 ltaddrp 9623 xrlttr 9727 xrltso 9728 xltnegi 9767 xaddnemnf 9789 xaddnepnf 9790 xaddcom 9793 xnegdi 9800 xsubge0 9813 fzind2 10170 qltnle 10177 qbtwnxr 10189 exp3vallem 10452 expp1 10458 expnegap0 10459 expcllem 10462 mulexpzap 10491 expaddzap 10495 expmulzap 10497 hashunlem 10713 shftf 10768 sqrtdiv 10980 mulcn2 11249 summodclem2 11319 fsum3 11324 cvgratz 11469 prodmodclem2 11514 zproddc 11516 prodsnf 11529 dvdsflip 11785 dvdsfac 11794 lcmgcdlem 12005 rpexp1i 12082 hashdvds 12149 hashgcdlem 12166 phisum 12168 pcqcl 12234 pcid 12251 ssnnctlemct 12375 lmss 12846 xmetrtri 12976 blssioo 13145 divcnap 13155 dedekindicc 13211 dvidlemap 13260 dvrecap 13277 dveflem 13287 lgsval3 13519 lgsdir2 13534 2sqlem6 13556 bj-bdfindes 13791 bj-findes 13823 |
Copyright terms: Public domain | W3C validator |