| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
| sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 941 bm1.1 2214 eqtr3 2249 elnelne1 2504 elnelne2 2505 morex 2987 reuss2 3484 reupick 3488 rabsneu 3739 invdisjrab 4077 opabss 4148 triun 4195 poirr 4398 wepo 4450 wetrep 4451 rexxfrd 4554 reg3exmidlemwe 4671 nnsuc 4708 fnfco 5502 fun11iun 5595 fnressn 5829 fvpr1g 5849 fvtp1g 5851 fvtp3g 5853 fvtp3 5856 f1mpt 5901 caovlem2d 6204 offval 6232 dfoprab3 6343 1stconst 6373 2ndconst 6374 poxp 6384 tfrlemisucaccv 6477 tfr1onlemsucaccv 6493 tfrcllemsucaccv 6506 fiintim 7101 pr1or2 7375 addclpi 7522 addnidpig 7531 reapmul1 8750 nnnn0addcl 9407 un0addcl 9410 un0mulcl 9411 zltnle 9500 nn0ge0div 9542 uzind3 9568 uzind4 9791 ltsubrp 9894 ltaddrp 9895 xrlttr 9999 xrltso 10000 xltnegi 10039 xaddnemnf 10061 xaddnepnf 10062 xaddcom 10065 xnegdi 10072 xsubge0 10085 fzind2 10453 qltnle 10471 qbtwnxr 10485 exp3vallem 10770 expp1 10776 expnegap0 10777 expcllem 10780 mulexpzap 10809 expaddzap 10813 expmulzap 10815 hashunlem 11034 cats1un 11261 reuccatpfxs1 11287 shftf 11349 sqrtdiv 11561 mulcn2 11831 summodclem2 11901 fsum3 11906 cvgratz 12051 prodmodclem2 12096 zproddc 12098 prodsnf 12111 dvdsflip 12370 dvdsfac 12379 bitsfzolem 12473 lcmgcdlem 12607 rpexp1i 12684 hashdvds 12751 hashgcdlem 12768 phisum 12771 pcqcl 12837 pcid 12855 ssnnctlemct 13025 issubmd 13515 grpinvnzcl 13613 mulgneg 13685 mulgnn0z 13694 01eq0ring 14161 lmss 14928 xmetrtri 15058 blssioo 15235 divcnap 15247 dedekindicc 15315 dvidlemap 15373 dvidrelem 15374 dvidsslem 15375 dvrecap 15395 dveflem 15408 lgsval3 15705 lgsdir2 15720 2sqlem6 15807 umgredg 15951 umgrpredgv 15953 umgredgne 15956 umgredgnlp 15958 usgredgppren 16003 edgssv2en 16005 uspgredg2vlem 16026 usgredg2vlem1 16028 bj-bdfindes 16336 bj-findes 16368 2omap 16388 |
| Copyright terms: Public domain | W3C validator |