| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
| sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 938 bm1.1 2191 eqtr3 2226 elnelne1 2481 elnelne2 2482 morex 2959 reuss2 3455 reupick 3459 rabsneu 3708 invdisjrab 4042 opabss 4113 triun 4160 poirr 4359 wepo 4411 wetrep 4412 rexxfrd 4515 reg3exmidlemwe 4632 nnsuc 4669 fnfco 5459 fun11iun 5552 fnressn 5780 fvpr1g 5800 fvtp1g 5802 fvtp3g 5804 fvtp3 5807 f1mpt 5850 caovlem2d 6149 offval 6176 dfoprab3 6287 1stconst 6317 2ndconst 6318 poxp 6328 tfrlemisucaccv 6421 tfr1onlemsucaccv 6437 tfrcllemsucaccv 6450 fiintim 7040 pr1or2 7313 addclpi 7453 addnidpig 7462 reapmul1 8681 nnnn0addcl 9338 un0addcl 9341 un0mulcl 9342 zltnle 9431 nn0ge0div 9473 uzind3 9499 uzind4 9722 ltsubrp 9825 ltaddrp 9826 xrlttr 9930 xrltso 9931 xltnegi 9970 xaddnemnf 9992 xaddnepnf 9993 xaddcom 9996 xnegdi 10003 xsubge0 10016 fzind2 10381 qltnle 10399 qbtwnxr 10413 exp3vallem 10698 expp1 10704 expnegap0 10705 expcllem 10708 mulexpzap 10737 expaddzap 10741 expmulzap 10743 hashunlem 10962 shftf 11191 sqrtdiv 11403 mulcn2 11673 summodclem2 11743 fsum3 11748 cvgratz 11893 prodmodclem2 11938 zproddc 11940 prodsnf 11953 dvdsflip 12212 dvdsfac 12221 bitsfzolem 12315 lcmgcdlem 12449 rpexp1i 12526 hashdvds 12593 hashgcdlem 12610 phisum 12613 pcqcl 12679 pcid 12697 ssnnctlemct 12867 issubmd 13356 grpinvnzcl 13454 mulgneg 13526 mulgnn0z 13535 01eq0ring 14001 lmss 14768 xmetrtri 14898 blssioo 15075 divcnap 15087 dedekindicc 15155 dvidlemap 15213 dvidrelem 15214 dvidsslem 15215 dvrecap 15235 dveflem 15248 lgsval3 15545 lgsdir2 15560 2sqlem6 15647 bj-bdfindes 15999 bj-findes 16031 2omap 16047 |
| Copyright terms: Public domain | W3C validator |