| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
| sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 941 bm1.1 2214 eqtr3 2249 elnelne1 2504 elnelne2 2505 morex 2987 reuss2 3484 reupick 3488 rabsneu 3739 invdisjrab 4076 opabss 4147 triun 4194 poirr 4395 wepo 4447 wetrep 4448 rexxfrd 4551 reg3exmidlemwe 4668 nnsuc 4705 fnfco 5496 fun11iun 5589 fnressn 5818 fvpr1g 5838 fvtp1g 5840 fvtp3g 5842 fvtp3 5845 f1mpt 5888 caovlem2d 6189 offval 6216 dfoprab3 6327 1stconst 6357 2ndconst 6358 poxp 6368 tfrlemisucaccv 6461 tfr1onlemsucaccv 6477 tfrcllemsucaccv 6490 fiintim 7081 pr1or2 7355 addclpi 7502 addnidpig 7511 reapmul1 8730 nnnn0addcl 9387 un0addcl 9390 un0mulcl 9391 zltnle 9480 nn0ge0div 9522 uzind3 9548 uzind4 9771 ltsubrp 9874 ltaddrp 9875 xrlttr 9979 xrltso 9980 xltnegi 10019 xaddnemnf 10041 xaddnepnf 10042 xaddcom 10045 xnegdi 10052 xsubge0 10065 fzind2 10432 qltnle 10450 qbtwnxr 10464 exp3vallem 10749 expp1 10755 expnegap0 10756 expcllem 10759 mulexpzap 10788 expaddzap 10792 expmulzap 10794 hashunlem 11013 cats1un 11239 reuccatpfxs1 11265 shftf 11327 sqrtdiv 11539 mulcn2 11809 summodclem2 11879 fsum3 11884 cvgratz 12029 prodmodclem2 12074 zproddc 12076 prodsnf 12089 dvdsflip 12348 dvdsfac 12357 bitsfzolem 12451 lcmgcdlem 12585 rpexp1i 12662 hashdvds 12729 hashgcdlem 12746 phisum 12749 pcqcl 12815 pcid 12833 ssnnctlemct 13003 issubmd 13493 grpinvnzcl 13591 mulgneg 13663 mulgnn0z 13672 01eq0ring 14138 lmss 14905 xmetrtri 15035 blssioo 15212 divcnap 15224 dedekindicc 15292 dvidlemap 15350 dvidrelem 15351 dvidsslem 15352 dvrecap 15372 dveflem 15385 lgsval3 15682 lgsdir2 15697 2sqlem6 15784 umgredg 15928 umgrpredgv 15930 umgredgne 15933 umgredgnlp 15935 usgredgppren 15980 edgssv2en 15982 uspgredg2vlem 16003 usgredg2vlem1 16005 bj-bdfindes 16242 bj-findes 16274 2omap 16290 |
| Copyright terms: Public domain | W3C validator |