| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2b | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2b.1 | ⊢ (𝜑 ↔ 𝜒) |
| sylan2b.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2b | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2b.1 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 dcor 937 bm1.1 2181 eqtr3 2216 elnelne1 2471 elnelne2 2472 morex 2948 reuss2 3444 reupick 3448 rabsneu 3696 opabss 4098 triun 4145 poirr 4343 wepo 4395 wetrep 4396 rexxfrd 4499 reg3exmidlemwe 4616 nnsuc 4653 fnfco 5435 fun11iun 5528 fnressn 5751 fvpr1g 5771 fvtp1g 5773 fvtp3g 5775 fvtp3 5778 f1mpt 5821 caovlem2d 6120 offval 6147 dfoprab3 6258 1stconst 6288 2ndconst 6289 poxp 6299 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 fiintim 7001 addclpi 7411 addnidpig 7420 reapmul1 8639 nnnn0addcl 9296 un0addcl 9299 un0mulcl 9300 zltnle 9389 nn0ge0div 9430 uzind3 9456 uzind4 9679 ltsubrp 9782 ltaddrp 9783 xrlttr 9887 xrltso 9888 xltnegi 9927 xaddnemnf 9949 xaddnepnf 9950 xaddcom 9953 xnegdi 9960 xsubge0 9973 fzind2 10332 qltnle 10350 qbtwnxr 10364 exp3vallem 10649 expp1 10655 expnegap0 10656 expcllem 10659 mulexpzap 10688 expaddzap 10692 expmulzap 10694 hashunlem 10913 shftf 11012 sqrtdiv 11224 mulcn2 11494 summodclem2 11564 fsum3 11569 cvgratz 11714 prodmodclem2 11759 zproddc 11761 prodsnf 11774 dvdsflip 12033 dvdsfac 12042 bitsfzolem 12136 lcmgcdlem 12270 rpexp1i 12347 hashdvds 12414 hashgcdlem 12431 phisum 12434 pcqcl 12500 pcid 12518 ssnnctlemct 12688 issubmd 13176 grpinvnzcl 13274 mulgneg 13346 mulgnn0z 13355 01eq0ring 13821 lmss 14566 xmetrtri 14696 blssioo 14873 divcnap 14885 dedekindicc 14953 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvrecap 15033 dveflem 15046 lgsval3 15343 lgsdir2 15358 2sqlem6 15445 bj-bdfindes 15679 bj-findes 15711 2omap 15726 |
| Copyright terms: Public domain | W3C validator |