| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelne2 | GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | 1 | biimpcd 159 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
| 3 | 2 | necon3bd 2410 | . 2 ⊢ (𝐴 ∈ 𝐶 → (¬ 𝐵 ∈ 𝐶 → 𝐴 ≠ 𝐵)) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-ne 2368 |
| This theorem is referenced by: nelelne 2459 elnelne2 2472 zgt1rpn0n1 9770 |
| Copyright terms: Public domain | W3C validator |