![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equs5 | GIF version |
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equs5 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbnae 1656 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | hba1 1478 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | ax11o 1750 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
4 | 3 | impd 251 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 1, 2, 4 | exlimdh 1532 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wal 1287 ∃wex 1426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 |
This theorem is referenced by: sb3 1759 sb4 1760 |
Copyright terms: Public domain | W3C validator |