ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5 GIF version

Theorem equs5 1817
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equs5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem equs5
StepHypRef Expression
1 hbnae 1709 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
2 hba1 1528 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝑥(𝑥 = 𝑦𝜑))
3 ax11o 1810 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
43impd 252 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 2, 4exlimdh 1584 1 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751
This theorem is referenced by:  sb3  1819  sb4  1820
  Copyright terms: Public domain W3C validator