| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsb3 | GIF version | ||
| Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) |
| Ref | Expression |
|---|---|
| equsb3 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb3lem 1979 | . . 3 ⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | |
| 2 | 1 | sbbii 1789 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑤]𝑤 = 𝑧) |
| 3 | ax-17 1550 | . . 3 ⊢ (𝑥 = 𝑧 → ∀𝑤 𝑥 = 𝑧) | |
| 4 | 3 | sbco2vh 1974 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑥]𝑥 = 𝑧) |
| 5 | equsb3lem 1979 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 = 𝑧 ↔ 𝑦 = 𝑧) | |
| 6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sb8eu 2068 sb8euh 2078 sb8iota 5248 |
| Copyright terms: Public domain | W3C validator |