ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3 GIF version

Theorem equsb3 1980
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
Assertion
Ref Expression
equsb3 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem equsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equsb3lem 1979 . . 3 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
21sbbii 1789 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑤]𝑤 = 𝑧)
3 ax-17 1550 . . 3 (𝑥 = 𝑧 → ∀𝑤 𝑥 = 𝑧)
43sbco2vh 1974 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑥]𝑥 = 𝑧)
5 equsb3lem 1979 . 2 ([𝑦 / 𝑤]𝑤 = 𝑧𝑦 = 𝑧)
62, 4, 53bitr3i 210 1 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sb8eu  2068  sb8euh  2078  sb8iota  5248
  Copyright terms: Public domain W3C validator