ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3 GIF version

Theorem equsb3 1949
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
Assertion
Ref Expression
equsb3 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem equsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equsb3lem 1948 . . 3 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
21sbbii 1763 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑤]𝑤 = 𝑧)
3 ax-17 1524 . . 3 (𝑥 = 𝑧 → ∀𝑤 𝑥 = 𝑧)
43sbco2vh 1943 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑥]𝑥 = 𝑧)
5 equsb3lem 1948 . 2 ([𝑦 / 𝑤]𝑤 = 𝑧𝑦 = 𝑧)
62, 4, 53bitr3i 210 1 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761
This theorem is referenced by:  sb8eu  2037  sb8euh  2047  sb8iota  5177
  Copyright terms: Public domain W3C validator