Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equsb3 | GIF version |
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) |
Ref | Expression |
---|---|
equsb3 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb3lem 1948 | . . 3 ⊢ ([𝑤 / 𝑥]𝑥 = 𝑧 ↔ 𝑤 = 𝑧) | |
2 | 1 | sbbii 1763 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑤]𝑤 = 𝑧) |
3 | ax-17 1524 | . . 3 ⊢ (𝑥 = 𝑧 → ∀𝑤 𝑥 = 𝑧) | |
4 | 3 | sbco2vh 1943 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝑧 ↔ [𝑦 / 𝑥]𝑥 = 𝑧) |
5 | equsb3lem 1948 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 = 𝑧 ↔ 𝑦 = 𝑧) | |
6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: sb8eu 2037 sb8euh 2047 sb8iota 5177 |
Copyright terms: Public domain | W3C validator |