ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb GIF version

Theorem hbsb 1872
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Hypothesis
Ref Expression
hbsb.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsb ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21nfi 1397 . . 3 𝑧𝜑
32nfsb 1871 . 2 𝑧[𝑦 / 𝑥]𝜑
43nfri 1458 1 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1288  [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694
This theorem is referenced by:  sb10f  1920  hbsb4  1937  sb8euh  1972  hbab  2080  hblem  2196
  Copyright terms: Public domain W3C validator