![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbsb | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.) |
Ref | Expression |
---|---|
hbsb.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
hbsb | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | nfi 1462 | . . 3 ⊢ Ⅎ𝑧𝜑 |
3 | 2 | nfsb 1946 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
4 | 3 | nfri 1519 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: sb10f 1995 hbsb4 2012 sb8euh 2049 hbab 2168 hblem 2285 |
Copyright terms: Public domain | W3C validator |