Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsb | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.) |
Ref | Expression |
---|---|
hbsb.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
hbsb | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | nfi 1450 | . . 3 ⊢ Ⅎ𝑧𝜑 |
3 | 2 | nfsb 1934 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
4 | 3 | nfri 1507 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: sb10f 1983 hbsb4 2000 sb8euh 2037 hbab 2156 hblem 2274 |
Copyright terms: Public domain | W3C validator |