ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserd GIF version

Theorem iserd 6463
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1 (𝜑 → Rel 𝑅)
iserd.2 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
iserd.3 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
iserd.4 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
Assertion
Ref Expression
iserd (𝜑𝑅 Er 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3 (𝜑 → Rel 𝑅)
2 eqidd 2141 . . 3 (𝜑 → dom 𝑅 = dom 𝑅)
3 iserd.2 . . . . . . . 8 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
43ex 114 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
5 iserd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
65ex 114 . . . . . . 7 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
74, 6jca 304 . . . . . 6 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87alrimiv 1847 . . . . 5 (𝜑 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
98alrimiv 1847 . . . 4 (𝜑 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109alrimiv 1847 . . 3 (𝜑 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
11 dfer2 6438 . . 3 (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
121, 2, 10, 11syl3anbrc 1166 . 2 (𝜑𝑅 Er dom 𝑅)
1312adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅)
14 simpr 109 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅)
1513, 14erref 6457 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
1615ex 114 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
17 vex 2692 . . . . . . 7 𝑥 ∈ V
1817, 17breldm 4751 . . . . . 6 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
1916, 18impbid1 141 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
20 iserd.4 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
2119, 20bitr4d 190 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝐴))
2221eqrdv 2138 . . 3 (𝜑 → dom 𝑅 = 𝐴)
23 ereq2 6445 . . 3 (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2422, 23syl 14 . 2 (𝜑 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2512, 24mpbid 146 1 (𝜑𝑅 Er 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1330   = wceq 1332  wcel 1481   class class class wbr 3937  dom cdm 4547  Rel wrel 4552   Er wer 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-er 6437
This theorem is referenced by:  swoer  6465  eqer  6469  0er  6471  iinerm  6509  erinxp  6511  ecopover  6535  ecopoverg  6538  ener  6681  enq0er  7267  xmeter  12644
  Copyright terms: Public domain W3C validator