| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iserd | GIF version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| iserd.1 | ⊢ (𝜑 → Rel 𝑅) | 
| iserd.2 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) | 
| iserd.3 | ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) | 
| iserd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) | 
| Ref | Expression | 
|---|---|
| iserd | ⊢ (𝜑 → 𝑅 Er 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iserd.1 | . . 3 ⊢ (𝜑 → Rel 𝑅) | |
| 2 | eqidd 2197 | . . 3 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
| 3 | iserd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) | |
| 4 | 3 | ex 115 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | 
| 5 | iserd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) | |
| 6 | 5 | ex 115 | . . . . . . 7 ⊢ (𝜑 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 7 | 4, 6 | jca 306 | . . . . . 6 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 8 | 7 | alrimiv 1888 | . . . . 5 ⊢ (𝜑 → ∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 9 | 8 | alrimiv 1888 | . . . 4 ⊢ (𝜑 → ∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 10 | 9 | alrimiv 1888 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 11 | dfer2 6593 | . . 3 ⊢ (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | |
| 12 | 1, 2, 10, 11 | syl3anbrc 1183 | . 2 ⊢ (𝜑 → 𝑅 Er dom 𝑅) | 
| 13 | 12 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅) | 
| 14 | simpr 110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅) | |
| 15 | 13, 14 | erref 6612 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) | 
| 16 | 15 | ex 115 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 → 𝑥𝑅𝑥)) | 
| 17 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 18 | 17, 17 | breldm 4870 | . . . . . 6 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) | 
| 19 | 16, 18 | impbid1 142 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥𝑅𝑥)) | 
| 20 | iserd.4 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) | |
| 21 | 19, 20 | bitr4d 191 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) | 
| 22 | 21 | eqrdv 2194 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐴) | 
| 23 | ereq2 6600 | . . 3 ⊢ (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ (𝜑 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) | 
| 25 | 12, 24 | mpbid 147 | 1 ⊢ (𝜑 → 𝑅 Er 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 dom cdm 4663 Rel wrel 4668 Er wer 6589 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-er 6592 | 
| This theorem is referenced by: swoer 6620 eqer 6624 0er 6626 iinerm 6666 erinxp 6668 ecopover 6692 ecopoverg 6695 ener 6838 enq0er 7502 eqger 13354 xmeter 14672 | 
| Copyright terms: Public domain | W3C validator |