ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserd GIF version

Theorem iserd 6676
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1 (𝜑 → Rel 𝑅)
iserd.2 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
iserd.3 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
iserd.4 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
Assertion
Ref Expression
iserd (𝜑𝑅 Er 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3 (𝜑 → Rel 𝑅)
2 eqidd 2210 . . 3 (𝜑 → dom 𝑅 = dom 𝑅)
3 iserd.2 . . . . . . . 8 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
43ex 115 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
5 iserd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
65ex 115 . . . . . . 7 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
74, 6jca 306 . . . . . 6 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87alrimiv 1900 . . . . 5 (𝜑 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
98alrimiv 1900 . . . 4 (𝜑 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109alrimiv 1900 . . 3 (𝜑 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
11 dfer2 6651 . . 3 (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
121, 2, 10, 11syl3anbrc 1186 . 2 (𝜑𝑅 Er dom 𝑅)
1312adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅)
14 simpr 110 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅)
1513, 14erref 6670 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
1615ex 115 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
17 vex 2782 . . . . . . 7 𝑥 ∈ V
1817, 17breldm 4904 . . . . . 6 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
1916, 18impbid1 142 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
20 iserd.4 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
2119, 20bitr4d 191 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝐴))
2221eqrdv 2207 . . 3 (𝜑 → dom 𝑅 = 𝐴)
23 ereq2 6658 . . 3 (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2422, 23syl 14 . 2 (𝜑 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2512, 24mpbid 147 1 (𝜑𝑅 Er 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1373   = wceq 1375  wcel 2180   class class class wbr 4062  dom cdm 4696  Rel wrel 4701   Er wer 6647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-er 6650
This theorem is referenced by:  swoer  6678  eqer  6682  0er  6684  iinerm  6724  erinxp  6726  ecopover  6750  ecopoverg  6753  ener  6901  enq0er  7590  eqger  13727  xmeter  15075
  Copyright terms: Public domain W3C validator