![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqcom 2195 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
3 | eqcom 2195 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqeq2i 2204 eqeq2d 2205 eqeq12 2206 eleq1 2256 neeq2 2378 alexeq 2887 ceqex 2888 pm13.183 2899 eqeu 2931 mo2icl 2940 mob2 2941 euind 2948 reu6i 2952 reuind 2966 sbc5 3010 csbiebg 3124 sneq 3630 preqr1g 3793 preqr1 3795 prel12 3798 preq12bg 3800 opth 4267 euotd 4284 ordtriexmid 4554 ontriexmidim 4555 wetriext 4610 tfisi 4620 ideqg 4814 resieq 4953 cnveqb 5122 cnveq0 5123 iota5 5237 funopg 5289 fneq2 5344 foeq3 5475 tz6.12f 5584 funbrfv 5596 fnbrfvb 5598 fvelimab 5614 elrnrexdm 5698 eufnfv 5790 f1veqaeq 5813 mpoeq123 5978 ovmpt4g 6042 ovi3 6057 ovg 6059 caovcang 6082 caovcan 6085 uchoice 6192 frecabcl 6454 nntri3or 6548 dcdifsnid 6559 nnaordex 6583 nnawordex 6584 ereq2 6597 eroveu 6682 2dom 6861 fundmen 6862 xpf1o 6902 nneneq 6915 tridc 6957 fisseneq 6990 fidcenumlemrks 7014 supsnti 7066 isotilem 7067 updjud 7143 nninfwlpoimlemdc 7238 exmidontriimlem3 7285 exmidontriimlem4 7286 onntri35 7299 exmidapne 7322 nqtri3or 7458 ltexnqq 7470 aptisr 7841 srpospr 7845 map2psrprg 7867 axpre-apti 7947 nntopi 7956 subval 8213 eqord1 8504 divvalap 8695 nn0ind-raph 9437 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 sqrtrval 11147 summodclem2 11528 prodmodclem2 11723 divides 11935 dvdstr 11974 odd2np1lem 12016 ndvdssub 12074 eucalglt 12198 hashgcdeq 12380 ennnfonelemim 12584 imasaddfnlemg 12900 dfgrp2 13102 grpidinv 13134 dfgrp3mlem 13173 isdomn 13768 xmeteq0 14538 gausslemma2dlem0i 15214 trilpo 15603 trirec0 15604 redcwlpo 15615 redc0 15617 reap0 15618 |
Copyright terms: Public domain | W3C validator |