| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | eqcom 2198 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
| 3 | eqcom 2198 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeq2i 2207 eqeq2d 2208 eqeq12 2209 eleq1 2259 neeq2 2381 alexeq 2890 ceqex 2891 pm13.183 2902 eqeu 2934 mo2icl 2943 mob2 2944 euind 2951 reu6i 2955 reuind 2969 sbc5 3013 csbiebg 3127 sneq 3634 preqr1g 3797 preqr1 3799 prel12 3802 preq12bg 3804 opth 4271 euotd 4288 ordtriexmid 4558 ontriexmidim 4559 wetriext 4614 tfisi 4624 ideqg 4818 resieq 4957 cnveqb 5126 cnveq0 5127 iota5 5241 funopg 5293 fneq2 5348 foeq3 5481 tz6.12f 5590 funbrfv 5602 fnbrfvb 5604 fvelimab 5620 elrnrexdm 5704 eufnfv 5796 f1veqaeq 5819 mpoeq123 5985 ovmpt4g 6049 ovi3 6064 ovg 6066 caovcang 6089 caovcan 6092 uchoice 6204 frecabcl 6466 nntri3or 6560 dcdifsnid 6571 nnaordex 6595 nnawordex 6596 ereq2 6609 eroveu 6694 2dom 6873 fundmen 6874 xpf1o 6914 nneneq 6927 tridc 6969 prfidceq 6998 tpfidceq 7000 fisseneq 7004 fidcenumlemrks 7028 supsnti 7080 isotilem 7081 updjud 7157 nninfwlpoimlemdc 7252 exmidontriimlem3 7308 exmidontriimlem4 7309 onntri35 7322 exmidapne 7345 nqtri3or 7482 ltexnqq 7494 aptisr 7865 srpospr 7869 map2psrprg 7891 axpre-apti 7971 nntopi 7980 subval 8237 eqord1 8529 divvalap 8720 nn0ind-raph 9462 frecuzrdgtcl 10523 frecuzrdgfunlem 10530 sqrtrval 11184 summodclem2 11566 prodmodclem2 11761 divides 11973 dvdstr 12012 odd2np1lem 12056 ndvdssub 12114 bitsinv1 12146 eucalglt 12252 hashgcdeq 12435 ennnfonelemim 12668 imasaddfnlemg 13018 dfgrp2 13231 grpidinv 13263 dfgrp3mlem 13302 isdomn 13903 xmeteq0 14703 mpodvdsmulf1o 15334 gausslemma2dlem0i 15406 trilpo 15800 trirec0 15801 redcwlpo 15812 redc0 15814 reap0 15815 |
| Copyright terms: Public domain | W3C validator |