Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqcom 2172 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
3 | eqcom 2172 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqeq2i 2181 eqeq2d 2182 eqeq12 2183 eleq1 2233 neeq2 2354 alexeq 2856 ceqex 2857 pm13.183 2868 eqeu 2900 mo2icl 2909 mob2 2910 euind 2917 reu6i 2921 reuind 2935 sbc5 2978 csbiebg 3091 sneq 3592 preqr1g 3751 preqr1 3753 prel12 3756 preq12bg 3758 opth 4220 euotd 4237 ordtriexmid 4503 ontriexmidim 4504 wetriext 4559 tfisi 4569 ideqg 4760 resieq 4899 cnveqb 5064 cnveq0 5065 iota5 5178 funopg 5230 fneq2 5285 foeq3 5416 tz6.12f 5523 funbrfv 5533 fnbrfvb 5535 fvelimab 5550 elrnrexdm 5632 eufnfv 5723 f1veqaeq 5745 mpoeq123 5909 ovmpt4g 5972 ovi3 5986 ovg 5988 caovcang 6011 caovcan 6014 frecabcl 6375 nntri3or 6469 dcdifsnid 6480 nnaordex 6503 nnawordex 6504 ereq2 6517 eroveu 6600 2dom 6779 fundmen 6780 xpf1o 6818 nneneq 6831 tridc 6873 fisseneq 6905 fidcenumlemrks 6926 supsnti 6978 isotilem 6979 updjud 7055 exmidontriimlem3 7187 exmidontriimlem4 7188 onntri35 7201 nqtri3or 7345 ltexnqq 7357 aptisr 7728 srpospr 7732 map2psrprg 7754 axpre-apti 7834 nntopi 7843 subval 8098 eqord1 8389 divvalap 8578 nn0ind-raph 9316 frecuzrdgtcl 10355 frecuzrdgfunlem 10362 sqrtrval 10951 summodclem2 11332 prodmodclem2 11527 divides 11738 dvdstr 11777 odd2np1lem 11818 ndvdssub 11876 eucalglt 11998 hashgcdeq 12180 ennnfonelemim 12366 xmeteq0 13074 trilpo 13997 trirec0 13998 redcwlpo 14009 redc0 14011 reap0 14012 |
Copyright terms: Public domain | W3C validator |