| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2211 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | eqcom 2206 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
| 3 | eqcom 2206 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqeq2i 2215 eqeq2d 2216 eqeq12 2217 eleq1 2267 neeq2 2389 alexeq 2898 ceqex 2899 pm13.183 2910 eqeu 2942 mo2icl 2951 mob2 2952 euind 2959 reu6i 2963 reuind 2977 sbc5 3021 csbiebg 3135 sneq 3643 preqr1g 3806 preqr1 3808 prel12 3811 preq12bg 3813 opth 4280 euotd 4298 ordtriexmid 4568 ontriexmidim 4569 wetriext 4624 tfisi 4634 ideqg 4828 resieq 4968 cnveqb 5137 cnveq0 5138 iota5 5252 funopg 5304 fneq2 5362 foeq3 5495 tz6.12f 5604 funbrfv 5616 fnbrfvb 5618 fvelimab 5634 elrnrexdm 5718 eufnfv 5814 f1veqaeq 5837 mpoeq123 6003 ovmpt4g 6067 ovi3 6082 ovg 6084 caovcang 6107 caovcan 6110 uchoice 6222 frecabcl 6484 nntri3or 6578 dcdifsnid 6589 nnaordex 6613 nnawordex 6614 ereq2 6627 eroveu 6712 2dom 6896 fundmen 6897 xpf1o 6940 nneneq 6953 tridc 6995 prfidceq 7024 tpfidceq 7026 fisseneq 7030 fidcenumlemrks 7054 supsnti 7106 isotilem 7107 updjud 7183 nninfwlpoimlemdc 7278 exmidontriimlem3 7334 exmidontriimlem4 7335 onntri35 7348 exmidapne 7371 nqtri3or 7508 ltexnqq 7520 aptisr 7891 srpospr 7895 map2psrprg 7917 axpre-apti 7997 nntopi 8006 subval 8263 eqord1 8555 divvalap 8746 nn0ind-raph 9489 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 sqrtrval 11253 summodclem2 11635 prodmodclem2 11830 divides 12042 dvdstr 12081 odd2np1lem 12125 ndvdssub 12183 bitsinv1 12215 eucalglt 12321 hashgcdeq 12504 ennnfonelemim 12737 imasaddfnlemg 13088 dfgrp2 13301 grpidinv 13333 dfgrp3mlem 13372 isdomn 13973 xmeteq0 14773 mpodvdsmulf1o 15404 gausslemma2dlem0i 15476 trilpo 15915 trirec0 15916 redcwlpo 15927 redc0 15929 reap0 15930 |
| Copyright terms: Public domain | W3C validator |