| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2213 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | eqcom 2208 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
| 3 | eqcom 2208 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqeq2i 2217 eqeq2d 2218 eqeq12 2219 eleq1 2269 neeq2 2391 alexeq 2903 ceqex 2904 pm13.183 2915 eqeu 2947 mo2icl 2956 mob2 2957 euind 2964 reu6i 2968 reuind 2982 sbc5 3026 csbiebg 3140 sneq 3649 preqr1g 3813 preqr1 3815 prel12 3818 preq12bg 3820 opth 4289 euotd 4307 ordtriexmid 4577 ontriexmidim 4578 wetriext 4633 tfisi 4643 ideqg 4837 resieq 4978 cnveqb 5147 cnveq0 5148 iota5 5262 funopg 5314 fneq2 5372 foeq3 5508 tz6.12f 5618 funbrfv 5630 fnbrfvb 5632 fvelimab 5648 elrnrexdm 5732 eufnfv 5828 f1veqaeq 5851 mpoeq123 6017 ovmpt4g 6081 ovi3 6096 ovg 6098 caovcang 6121 caovcan 6124 uchoice 6236 frecabcl 6498 nntri3or 6592 dcdifsnid 6603 nnaordex 6627 nnawordex 6628 ereq2 6641 eroveu 6726 2dom 6911 fundmen 6912 xpf1o 6956 nneneq 6969 tridc 7011 prfidceq 7040 tpfidceq 7042 fisseneq 7046 fidcenumlemrks 7070 supsnti 7122 isotilem 7123 updjud 7199 nninfwlpoimlemdc 7294 exmidontriimlem3 7351 exmidontriimlem4 7352 onntri35 7368 exmidapne 7392 nqtri3or 7529 ltexnqq 7541 aptisr 7912 srpospr 7916 map2psrprg 7938 axpre-apti 8018 nntopi 8027 subval 8284 eqord1 8576 divvalap 8767 nn0ind-raph 9510 frecuzrdgtcl 10579 frecuzrdgfunlem 10586 wrdind 11198 wrd2ind 11199 sqrtrval 11386 summodclem2 11768 prodmodclem2 11963 divides 12175 dvdstr 12214 odd2np1lem 12258 ndvdssub 12316 bitsinv1 12348 eucalglt 12454 hashgcdeq 12637 ennnfonelemim 12870 imasaddfnlemg 13221 dfgrp2 13434 grpidinv 13466 dfgrp3mlem 13505 isdomn 14106 xmeteq0 14906 mpodvdsmulf1o 15537 gausslemma2dlem0i 15609 trilpo 16123 trirec0 16124 redcwlpo 16135 redc0 16137 reap0 16138 |
| Copyright terms: Public domain | W3C validator |