Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqcom 2167 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
3 | eqcom 2167 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqeq2i 2176 eqeq2d 2177 eqeq12 2178 eleq1 2229 neeq2 2350 alexeq 2852 ceqex 2853 pm13.183 2864 eqeu 2896 mo2icl 2905 mob2 2906 euind 2913 reu6i 2917 reuind 2931 sbc5 2974 csbiebg 3087 sneq 3587 preqr1g 3746 preqr1 3748 prel12 3751 preq12bg 3753 opth 4215 euotd 4232 ordtriexmid 4498 ontriexmidim 4499 wetriext 4554 tfisi 4564 ideqg 4755 resieq 4894 cnveqb 5059 cnveq0 5060 iota5 5173 funopg 5222 fneq2 5277 foeq3 5408 tz6.12f 5515 funbrfv 5525 fnbrfvb 5527 fvelimab 5542 elrnrexdm 5624 eufnfv 5715 f1veqaeq 5737 mpoeq123 5901 ovmpt4g 5964 ovi3 5978 ovg 5980 caovcang 6003 caovcan 6006 frecabcl 6367 nntri3or 6461 dcdifsnid 6472 nnaordex 6495 nnawordex 6496 ereq2 6509 eroveu 6592 2dom 6771 fundmen 6772 xpf1o 6810 nneneq 6823 tridc 6865 fisseneq 6897 fidcenumlemrks 6918 supsnti 6970 isotilem 6971 updjud 7047 exmidontriimlem3 7179 exmidontriimlem4 7180 onntri35 7193 nqtri3or 7337 ltexnqq 7349 aptisr 7720 srpospr 7724 map2psrprg 7746 axpre-apti 7826 nntopi 7835 subval 8090 eqord1 8381 divvalap 8570 nn0ind-raph 9308 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 sqrtrval 10942 summodclem2 11323 prodmodclem2 11518 divides 11729 dvdstr 11768 odd2np1lem 11809 ndvdssub 11867 eucalglt 11989 hashgcdeq 12171 ennnfonelemim 12357 xmeteq0 12999 trilpo 13922 trirec0 13923 redcwlpo 13934 redc0 13936 reap0 13937 |
Copyright terms: Public domain | W3C validator |