![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqcom 2195 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
3 | eqcom 2195 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqeq2i 2204 eqeq2d 2205 eqeq12 2206 eleq1 2256 neeq2 2378 alexeq 2886 ceqex 2887 pm13.183 2898 eqeu 2930 mo2icl 2939 mob2 2940 euind 2947 reu6i 2951 reuind 2965 sbc5 3009 csbiebg 3123 sneq 3629 preqr1g 3792 preqr1 3794 prel12 3797 preq12bg 3799 opth 4266 euotd 4283 ordtriexmid 4553 ontriexmidim 4554 wetriext 4609 tfisi 4619 ideqg 4813 resieq 4952 cnveqb 5121 cnveq0 5122 iota5 5236 funopg 5288 fneq2 5343 foeq3 5474 tz6.12f 5583 funbrfv 5595 fnbrfvb 5597 fvelimab 5613 elrnrexdm 5697 eufnfv 5789 f1veqaeq 5812 mpoeq123 5977 ovmpt4g 6041 ovi3 6055 ovg 6057 caovcang 6080 caovcan 6083 uchoice 6190 frecabcl 6452 nntri3or 6546 dcdifsnid 6557 nnaordex 6581 nnawordex 6582 ereq2 6595 eroveu 6680 2dom 6859 fundmen 6860 xpf1o 6900 nneneq 6913 tridc 6955 fisseneq 6988 fidcenumlemrks 7012 supsnti 7064 isotilem 7065 updjud 7141 nninfwlpoimlemdc 7236 exmidontriimlem3 7283 exmidontriimlem4 7284 onntri35 7297 exmidapne 7320 nqtri3or 7456 ltexnqq 7468 aptisr 7839 srpospr 7843 map2psrprg 7865 axpre-apti 7945 nntopi 7954 subval 8211 eqord1 8502 divvalap 8693 nn0ind-raph 9434 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 sqrtrval 11144 summodclem2 11525 prodmodclem2 11720 divides 11932 dvdstr 11971 odd2np1lem 12013 ndvdssub 12071 eucalglt 12195 hashgcdeq 12377 ennnfonelemim 12581 imasaddfnlemg 12897 dfgrp2 13099 grpidinv 13131 dfgrp3mlem 13170 isdomn 13765 xmeteq0 14527 gausslemma2dlem0i 15173 trilpo 15533 trirec0 15534 redcwlpo 15545 redc0 15547 reap0 15548 |
Copyright terms: Public domain | W3C validator |