Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqcom 2172 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
3 | eqcom 2172 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqeq2i 2181 eqeq2d 2182 eqeq12 2183 eleq1 2233 neeq2 2354 alexeq 2856 ceqex 2857 pm13.183 2868 eqeu 2900 mo2icl 2909 mob2 2910 euind 2917 reu6i 2921 reuind 2935 sbc5 2978 csbiebg 3091 sneq 3594 preqr1g 3753 preqr1 3755 prel12 3758 preq12bg 3760 opth 4222 euotd 4239 ordtriexmid 4505 ontriexmidim 4506 wetriext 4561 tfisi 4571 ideqg 4762 resieq 4901 cnveqb 5066 cnveq0 5067 iota5 5180 funopg 5232 fneq2 5287 foeq3 5418 tz6.12f 5525 funbrfv 5535 fnbrfvb 5537 fvelimab 5552 elrnrexdm 5635 eufnfv 5726 f1veqaeq 5748 mpoeq123 5912 ovmpt4g 5975 ovi3 5989 ovg 5991 caovcang 6014 caovcan 6017 frecabcl 6378 nntri3or 6472 dcdifsnid 6483 nnaordex 6507 nnawordex 6508 ereq2 6521 eroveu 6604 2dom 6783 fundmen 6784 xpf1o 6822 nneneq 6835 tridc 6877 fisseneq 6909 fidcenumlemrks 6930 supsnti 6982 isotilem 6983 updjud 7059 nninfwlpoimlemdc 7153 exmidontriimlem3 7200 exmidontriimlem4 7201 onntri35 7214 nqtri3or 7358 ltexnqq 7370 aptisr 7741 srpospr 7745 map2psrprg 7767 axpre-apti 7847 nntopi 7856 subval 8111 eqord1 8402 divvalap 8591 nn0ind-raph 9329 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 sqrtrval 10964 summodclem2 11345 prodmodclem2 11540 divides 11751 dvdstr 11790 odd2np1lem 11831 ndvdssub 11889 eucalglt 12011 hashgcdeq 12193 ennnfonelemim 12379 dfgrp2 12732 grpidinv 12759 xmeteq0 13153 trilpo 14075 trirec0 14076 redcwlpo 14087 redc0 14089 reap0 14090 |
Copyright terms: Public domain | W3C validator |