| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2 | GIF version | ||
| Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | eqcom 2198 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
| 3 | eqcom 2198 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeq2i 2207 eqeq2d 2208 eqeq12 2209 eleq1 2259 neeq2 2381 alexeq 2890 ceqex 2891 pm13.183 2902 eqeu 2934 mo2icl 2943 mob2 2944 euind 2951 reu6i 2955 reuind 2969 sbc5 3013 csbiebg 3127 sneq 3633 preqr1g 3796 preqr1 3798 prel12 3801 preq12bg 3803 opth 4270 euotd 4287 ordtriexmid 4557 ontriexmidim 4558 wetriext 4613 tfisi 4623 ideqg 4817 resieq 4956 cnveqb 5125 cnveq0 5126 iota5 5240 funopg 5292 fneq2 5347 foeq3 5478 tz6.12f 5587 funbrfv 5599 fnbrfvb 5601 fvelimab 5617 elrnrexdm 5701 eufnfv 5793 f1veqaeq 5816 mpoeq123 5981 ovmpt4g 6045 ovi3 6060 ovg 6062 caovcang 6085 caovcan 6088 uchoice 6195 frecabcl 6457 nntri3or 6551 dcdifsnid 6562 nnaordex 6586 nnawordex 6587 ereq2 6600 eroveu 6685 2dom 6864 fundmen 6865 xpf1o 6905 nneneq 6918 tridc 6960 prfidceq 6989 tpfidceq 6991 fisseneq 6995 fidcenumlemrks 7019 supsnti 7071 isotilem 7072 updjud 7148 nninfwlpoimlemdc 7243 exmidontriimlem3 7290 exmidontriimlem4 7291 onntri35 7304 exmidapne 7327 nqtri3or 7463 ltexnqq 7475 aptisr 7846 srpospr 7850 map2psrprg 7872 axpre-apti 7952 nntopi 7961 subval 8218 eqord1 8510 divvalap 8701 nn0ind-raph 9443 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 sqrtrval 11165 summodclem2 11547 prodmodclem2 11742 divides 11954 dvdstr 11993 odd2np1lem 12037 ndvdssub 12095 eucalglt 12225 hashgcdeq 12408 ennnfonelemim 12641 imasaddfnlemg 12957 dfgrp2 13159 grpidinv 13191 dfgrp3mlem 13230 isdomn 13825 xmeteq0 14595 mpodvdsmulf1o 15226 gausslemma2dlem0i 15298 trilpo 15687 trirec0 15688 redcwlpo 15699 redc0 15701 reap0 15702 |
| Copyright terms: Public domain | W3C validator |