| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eujust | GIF version | ||
| Description: A soundness justification theorem for df-eu 2056, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| eujust | ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 1735 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑤)) | |
| 2 | 1 | bibi2d 232 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝑤))) |
| 3 | 2 | albidv 1846 | . . 3 ⊢ (𝑦 = 𝑤 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤))) |
| 4 | 3 | cbvexv 1941 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑤∀𝑥(𝜑 ↔ 𝑥 = 𝑤)) |
| 5 | equequ2 1735 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑧)) | |
| 6 | 5 | bibi2d 232 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ (𝜑 ↔ 𝑥 = 𝑧))) |
| 7 | 6 | albidv 1846 | . . 3 ⊢ (𝑤 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 8 | 7 | cbvexv 1941 | . 2 ⊢ (∃𝑤∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
| 9 | 4, 8 | bitri 184 | 1 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1370 = wceq 1372 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |