Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eujust | GIF version |
Description: A soundness justification theorem for df-eu 2022, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
eujust | ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1706 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑤)) | |
2 | 1 | bibi2d 231 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝑤))) |
3 | 2 | albidv 1817 | . . 3 ⊢ (𝑦 = 𝑤 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤))) |
4 | 3 | cbvexv 1911 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑤∀𝑥(𝜑 ↔ 𝑥 = 𝑤)) |
5 | equequ2 1706 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑧)) | |
6 | 5 | bibi2d 231 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ (𝜑 ↔ 𝑥 = 𝑧))) |
7 | 6 | albidv 1817 | . . 3 ⊢ (𝑤 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
8 | 7 | cbvexv 1911 | . 2 ⊢ (∃𝑤∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
9 | 4, 8 | bitri 183 | 1 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 = wceq 1348 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |