ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eujust GIF version

Theorem eujust 2021
Description: A soundness justification theorem for df-eu 2022, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
eujust (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧   𝜑,𝑦   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eujust
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equequ2 1706 . . . . 5 (𝑦 = 𝑤 → (𝑥 = 𝑦𝑥 = 𝑤))
21bibi2d 231 . . . 4 (𝑦 = 𝑤 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝑤)))
32albidv 1817 . . 3 (𝑦 = 𝑤 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝑤)))
43cbvexv 1911 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∃𝑤𝑥(𝜑𝑥 = 𝑤))
5 equequ2 1706 . . . . 5 (𝑤 = 𝑧 → (𝑥 = 𝑤𝑥 = 𝑧))
65bibi2d 231 . . . 4 (𝑤 = 𝑧 → ((𝜑𝑥 = 𝑤) ↔ (𝜑𝑥 = 𝑧)))
76albidv 1817 . . 3 (𝑤 = 𝑧 → (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑥(𝜑𝑥 = 𝑧)))
87cbvexv 1911 . 2 (∃𝑤𝑥(𝜑𝑥 = 𝑤) ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
94, 8bitri 183 1 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1346   = wceq 1348  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator