![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1766 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: eujust 2044 euind 2947 reuind 2965 r19.2m 3533 r19.3rm 3535 r19.9rmv 3538 raaanlem 3551 raaan 3552 cbvopab2v 4106 bm1.3ii 4150 mss 4255 zfun 4465 xpiindim 4799 relop 4812 dmmrnm 4881 dmxpm 4882 dmcoss 4931 xpm 5087 cnviinm 5207 iotam 5246 fv3 5577 elfvm 5587 fo1stresm 6214 fo2ndresm 6215 tfr1onlemaccex 6401 tfrcllemaccex 6414 iinerm 6661 riinerm 6662 ixpiinm 6778 ac6sfi 6954 ctmlemr 7167 ctm 7168 ctssdclemr 7171 ctssdc 7172 fodjum 7205 acfun 7267 ccfunen 7324 cc2lem 7326 cc2 7327 ltexprlemdisj 7666 ltexprlemloc 7667 recexprlemdisj 7690 suplocsr 7869 axpre-suploc 7962 zfz1isolem1 10911 climmo 11441 summodc 11526 nninfdcex 12090 zsupssdc 12091 nninfct 12178 ctiunct 12597 ismnd 13000 dfgrp3me 13172 issubg2m 13259 subrgintm 13739 islssm 13853 islidlm 13975 neipsm 14322 suplociccex 14779 bdbm1.3ii 15383 |
Copyright terms: Public domain | W3C validator |