Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1524 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1524 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1753 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: eujust 2026 euind 2922 reuind 2940 r19.2m 3507 r19.3rm 3509 r19.9rmv 3512 raaanlem 3526 raaan 3527 cbvopab2v 4075 bm1.3ii 4119 mss 4220 zfun 4428 xpiindim 4757 relop 4770 dmmrnm 4839 dmxpm 4840 dmcoss 4889 xpm 5042 cnviinm 5162 iotam 5200 fv3 5530 fo1stresm 6152 fo2ndresm 6153 tfr1onlemaccex 6339 tfrcllemaccex 6352 iinerm 6597 riinerm 6598 ixpiinm 6714 ac6sfi 6888 ctmlemr 7097 ctm 7098 ctssdclemr 7101 ctssdc 7102 fodjum 7134 acfun 7196 ccfunen 7238 cc2lem 7240 cc2 7241 ltexprlemdisj 7580 ltexprlemloc 7581 recexprlemdisj 7604 suplocsr 7783 axpre-suploc 7876 zfz1isolem1 10788 climmo 11274 summodc 11359 nninfdcex 11921 zsupssdc 11922 ctiunct 12408 ismnd 12695 dfgrp3me 12840 neipsm 13234 suplociccex 13683 bdbm1.3ii 14212 |
Copyright terms: Public domain | W3C validator |