Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1514 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1743 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eujust 2016 euind 2913 reuind 2931 r19.2m 3495 r19.3rm 3497 r19.9rmv 3500 raaanlem 3514 raaan 3515 cbvopab2v 4059 bm1.3ii 4103 mss 4204 zfun 4412 xpiindim 4741 relop 4754 dmmrnm 4823 dmxpm 4824 dmcoss 4873 xpm 5025 cnviinm 5145 fv3 5509 fo1stresm 6129 fo2ndresm 6130 tfr1onlemaccex 6316 tfrcllemaccex 6329 iinerm 6573 riinerm 6574 ixpiinm 6690 ac6sfi 6864 ctmlemr 7073 ctm 7074 ctssdclemr 7077 ctssdc 7078 fodjum 7110 acfun 7163 ccfunen 7205 cc2lem 7207 cc2 7208 ltexprlemdisj 7547 ltexprlemloc 7548 recexprlemdisj 7571 suplocsr 7750 axpre-suploc 7843 zfz1isolem1 10753 climmo 11239 summodc 11324 nninfdcex 11886 zsupssdc 11887 ctiunct 12373 neipsm 12794 suplociccex 13243 bdbm1.3ii 13773 |
Copyright terms: Public domain | W3C validator |