![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1487 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1487 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1709 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eujust 1975 euind 2838 reuind 2856 r19.2m 3413 r19.3rm 3415 r19.9rmv 3418 raaanlem 3432 raaan 3433 cbvopab2v 3963 bm1.3ii 4007 mss 4106 zfun 4314 xpiindim 4634 relop 4647 dmmrnm 4716 dmxpm 4717 dmcoss 4764 xpm 4916 cnviinm 5036 fv3 5396 fo1stresm 6011 fo2ndresm 6012 tfr1onlemaccex 6197 tfrcllemaccex 6210 iinerm 6453 riinerm 6454 ixpiinm 6570 ac6sfi 6743 ctmlemr 6943 ctm 6944 ctssdclemr 6947 ctssdc 6948 fodjum 6966 acfun 7008 ltexprlemdisj 7356 ltexprlemloc 7357 recexprlemdisj 7380 zfz1isolem1 10470 climmo 10953 summodc 11038 ctiunct 11790 neipsm 12160 bdbm1.3ii 12772 |
Copyright terms: Public domain | W3C validator |