| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1552 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | ax-17 1552 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvexh 1781 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: eujust 2059 euind 2970 reuind 2988 r19.2m 3558 r19.3rm 3560 r19.9rmv 3563 raaanlem 3576 raaan 3577 cbvopab2v 4140 bm1.3ii 4184 mss 4291 zfun 4502 xpiindim 4836 relop 4849 dmmrnm 4919 dmxpm 4920 dmcoss 4970 xpm 5126 cnviinm 5246 iotam 5286 fv3 5626 elfvm 5636 fo1stresm 6277 fo2ndresm 6278 tfr1onlemaccex 6464 tfrcllemaccex 6477 iinerm 6724 riinerm 6725 ixpiinm 6841 ac6sfi 7028 ctmlemr 7243 ctm 7244 ctssdclemr 7247 ctssdc 7248 fodjum 7281 finacn 7354 acfun 7357 ccfunen 7418 cc2lem 7420 cc2 7421 ltexprlemdisj 7761 ltexprlemloc 7762 recexprlemdisj 7785 suplocsr 7964 axpre-suploc 8057 nninfdcex 10424 zsupssdc 10425 zfz1isolem1 11029 climmo 11775 summodc 11860 nninfct 12528 ctiunct 12977 ismnd 13418 dfgrp3me 13599 issubg2m 13692 subrgintm 14172 islssm 14286 islidlm 14408 neipsm 14793 suplociccex 15264 bdbm1.3ii 16164 |
| Copyright terms: Public domain | W3C validator |