| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | ax-17 1550 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvexh 1779 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: eujust 2057 euind 2961 reuind 2979 r19.2m 3548 r19.3rm 3550 r19.9rmv 3553 raaanlem 3566 raaan 3567 cbvopab2v 4125 bm1.3ii 4169 mss 4274 zfun 4485 xpiindim 4819 relop 4832 dmmrnm 4902 dmxpm 4903 dmcoss 4953 xpm 5109 cnviinm 5229 iotam 5268 fv3 5606 elfvm 5616 fo1stresm 6254 fo2ndresm 6255 tfr1onlemaccex 6441 tfrcllemaccex 6454 iinerm 6701 riinerm 6702 ixpiinm 6818 ac6sfi 7002 ctmlemr 7217 ctm 7218 ctssdclemr 7221 ctssdc 7222 fodjum 7255 finacn 7323 acfun 7326 ccfunen 7383 cc2lem 7385 cc2 7386 ltexprlemdisj 7726 ltexprlemloc 7727 recexprlemdisj 7750 suplocsr 7929 axpre-suploc 8022 nninfdcex 10387 zsupssdc 10388 zfz1isolem1 10992 climmo 11653 summodc 11738 nninfct 12406 ctiunct 12855 ismnd 13295 dfgrp3me 13476 issubg2m 13569 subrgintm 14049 islssm 14163 islidlm 14285 neipsm 14670 suplociccex 15141 bdbm1.3ii 15901 |
| Copyright terms: Public domain | W3C validator |