![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1766 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: eujust 2044 euind 2948 reuind 2966 r19.2m 3534 r19.3rm 3536 r19.9rmv 3539 raaanlem 3552 raaan 3553 cbvopab2v 4107 bm1.3ii 4151 mss 4256 zfun 4466 xpiindim 4800 relop 4813 dmmrnm 4882 dmxpm 4883 dmcoss 4932 xpm 5088 cnviinm 5208 iotam 5247 fv3 5578 elfvm 5588 fo1stresm 6216 fo2ndresm 6217 tfr1onlemaccex 6403 tfrcllemaccex 6416 iinerm 6663 riinerm 6664 ixpiinm 6780 ac6sfi 6956 ctmlemr 7169 ctm 7170 ctssdclemr 7173 ctssdc 7174 fodjum 7207 acfun 7269 ccfunen 7326 cc2lem 7328 cc2 7329 ltexprlemdisj 7668 ltexprlemloc 7669 recexprlemdisj 7692 suplocsr 7871 axpre-suploc 7964 zfz1isolem1 10914 climmo 11444 summodc 11529 nninfdcex 12093 zsupssdc 12094 nninfct 12181 ctiunct 12600 ismnd 13003 dfgrp3me 13175 issubg2m 13262 subrgintm 13742 islssm 13856 islidlm 13978 neipsm 14333 suplociccex 14804 bdbm1.3ii 15453 |
Copyright terms: Public domain | W3C validator |