![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1526 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1755 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: eujust 2028 euind 2925 reuind 2943 r19.2m 3510 r19.3rm 3512 r19.9rmv 3515 raaanlem 3529 raaan 3530 cbvopab2v 4081 bm1.3ii 4125 mss 4227 zfun 4435 xpiindim 4765 relop 4778 dmmrnm 4847 dmxpm 4848 dmcoss 4897 xpm 5051 cnviinm 5171 iotam 5209 fv3 5539 fo1stresm 6162 fo2ndresm 6163 tfr1onlemaccex 6349 tfrcllemaccex 6362 iinerm 6607 riinerm 6608 ixpiinm 6724 ac6sfi 6898 ctmlemr 7107 ctm 7108 ctssdclemr 7111 ctssdc 7112 fodjum 7144 acfun 7206 ccfunen 7263 cc2lem 7265 cc2 7266 ltexprlemdisj 7605 ltexprlemloc 7606 recexprlemdisj 7629 suplocsr 7808 axpre-suploc 7901 zfz1isolem1 10820 climmo 11306 summodc 11391 nninfdcex 11954 zsupssdc 11955 ctiunct 12441 ismnd 12820 dfgrp3me 12970 issubg2m 13049 subrgintm 13364 neipsm 13657 suplociccex 14106 bdbm1.3ii 14646 |
Copyright terms: Public domain | W3C validator |