| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | ax-17 1572 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvexh 1801 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: eujust 2079 euind 2990 reuind 3008 r19.2m 3578 r19.3rm 3580 r19.9rmv 3583 raaanlem 3596 raaan 3597 cbvopab2v 4161 bm1.3ii 4205 mss 4312 zfun 4525 xpiindim 4859 relop 4872 reldmm 4942 dmmrnm 4943 dmxpm 4944 dmcoss 4994 xpm 5150 cnviinm 5270 iotam 5310 fv3 5652 elfvm 5662 fo1stresm 6313 fo2ndresm 6314 tfr1onlemaccex 6500 tfrcllemaccex 6513 iinerm 6762 riinerm 6763 ixpiinm 6879 ac6sfi 7068 ctmlemr 7283 ctm 7284 ctssdclemr 7287 ctssdc 7288 fodjum 7321 finacn 7394 acfun 7397 ccfunen 7458 cc2lem 7460 cc2 7461 ltexprlemdisj 7801 ltexprlemloc 7802 recexprlemdisj 7825 suplocsr 8004 axpre-suploc 8097 nninfdcex 10465 zsupssdc 10466 zfz1isolem1 11070 climmo 11817 summodc 11902 nninfct 12570 ctiunct 13019 ismnd 13460 dfgrp3me 13641 issubg2m 13734 subrgintm 14215 islssm 14329 islidlm 14451 neipsm 14836 suplociccex 15307 bdbm1.3ii 16278 |
| Copyright terms: Public domain | W3C validator |