Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | ax-17 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | cbvalv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvexh 1748 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eujust 2021 euind 2917 reuind 2935 r19.2m 3501 r19.3rm 3503 r19.9rmv 3506 raaanlem 3520 raaan 3521 cbvopab2v 4066 bm1.3ii 4110 mss 4211 zfun 4419 xpiindim 4748 relop 4761 dmmrnm 4830 dmxpm 4831 dmcoss 4880 xpm 5032 cnviinm 5152 iotam 5190 fv3 5519 fo1stresm 6140 fo2ndresm 6141 tfr1onlemaccex 6327 tfrcllemaccex 6340 iinerm 6585 riinerm 6586 ixpiinm 6702 ac6sfi 6876 ctmlemr 7085 ctm 7086 ctssdclemr 7089 ctssdc 7090 fodjum 7122 acfun 7184 ccfunen 7226 cc2lem 7228 cc2 7229 ltexprlemdisj 7568 ltexprlemloc 7569 recexprlemdisj 7592 suplocsr 7771 axpre-suploc 7864 zfz1isolem1 10775 climmo 11261 summodc 11346 nninfdcex 11908 zsupssdc 11909 ctiunct 12395 ismnd 12655 neipsm 12948 suplociccex 13397 bdbm1.3ii 13926 |
Copyright terms: Public domain | W3C validator |