Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubidh | GIF version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
eubidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
eubidh | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | eubidh.2 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | bibi1d 232 | . . . 4 ⊢ (𝜑 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜒 ↔ 𝑥 = 𝑦))) |
4 | 1, 3 | albidh 1457 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
5 | 4 | exbidv 1802 | . 2 ⊢ (𝜑 → (∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
6 | df-eu 2006 | . 2 ⊢ (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦)) | |
7 | df-eu 2006 | . 2 ⊢ (∃!𝑥𝜒 ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦)) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1330 ∃wex 1469 ∃!weu 2003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-eu 2006 |
This theorem is referenced by: euor 2029 mobidh 2037 euan 2059 euor2 2061 eupickbi 2085 |
Copyright terms: Public domain | W3C validator |