| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu1 | GIF version | ||
| Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| eu1.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| eu1 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbs1 1966 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 2 | 1 | euf 2059 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑥∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥)) |
| 3 | eu1.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 4 | 3 | sb8euh 2077 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
| 5 | equcom 1729 | . . . . . . 7 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 5 | imbi2i 226 | . . . . . 6 ⊢ (([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥)) |
| 7 | 6 | albii 1493 | . . . . 5 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥)) |
| 8 | 3 | sb6rf 1876 | . . . . 5 ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) |
| 9 | 7, 8 | anbi12i 460 | . . . 4 ⊢ ((∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))) |
| 10 | ancom 266 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦) ∧ 𝜑)) | |
| 11 | albiim 1510 | . . . 4 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥) ↔ (∀𝑦([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))) | |
| 12 | 9, 10, 11 | 3bitr4i 212 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥)) |
| 13 | 12 | exbii 1628 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ ∃𝑥∀𝑦([𝑦 / 𝑥]𝜑 ↔ 𝑦 = 𝑥)) |
| 14 | 2, 4, 13 | 3bitr4i 212 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1515 [wsb 1785 ∃!weu 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 |
| This theorem is referenced by: euex 2084 eu2 2098 |
| Copyright terms: Public domain | W3C validator |