ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu1 GIF version

Theorem eu1 2067
Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
Hypothesis
Ref Expression
eu1.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
eu1 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu1
StepHypRef Expression
1 hbs1 1954 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
21euf 2047 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
3 eu1.1 . . 3 (𝜑 → ∀𝑦𝜑)
43sb8euh 2065 . 2 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
5 equcom 1717 . . . . . . 7 (𝑥 = 𝑦𝑦 = 𝑥)
65imbi2i 226 . . . . . 6 (([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
76albii 1481 . . . . 5 (∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
83sb6rf 1864 . . . . 5 (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
97, 8anbi12i 460 . . . 4 ((∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)))
10 ancom 266 . . . 4 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ (∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ∧ 𝜑))
11 albiim 1498 . . . 4 (∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥) ↔ (∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)))
129, 10, 113bitr4i 212 . . 3 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
1312exbii 1616 . 2 (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ ∃𝑥𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
142, 4, 133bitr4i 212 1 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1503  [wsb 1773  ∃!weu 2042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045
This theorem is referenced by:  euex  2072  eu2  2086
  Copyright terms: Public domain W3C validator