![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exp4b | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
3 | 2 | exp4a 366 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exp43 372 reuss2 3416 nndi 6487 mulnqprl 7567 mulnqpru 7568 distrlem5prl 7585 distrlem5pru 7586 recexprlemss1l 7634 recexprlemss1u 7635 lemul12a 8819 nnmulcl 8940 elfz0fzfz0 10126 fzo1fzo0n0 10183 fzofzim 10188 elfzodifsumelfzo 10201 le2sq2 10596 oddprmgt2 12134 infpnlem1 12357 lmodvsdi 13401 |
Copyright terms: Public domain | W3C validator |