| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp4b | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| 3 | 2 | exp4a 366 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exp43 372 reuss2 3484 nndi 6622 mulnqprl 7743 mulnqpru 7744 distrlem5prl 7761 distrlem5pru 7762 recexprlemss1l 7810 recexprlemss1u 7811 lemul12a 8997 nnmulcl 9119 elfz0fzfz0 10310 fzo1fzo0n0 10371 fzofzim 10376 elincfzoext 10386 elfzodifsumelfzo 10394 le2sq2 10824 swrdswrd 11223 swrdccat3blem 11257 oddprmgt2 12642 infpnlem1 12868 lmodvsdi 14260 |
| Copyright terms: Public domain | W3C validator |