ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 115 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 366 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3444  nndi  6553  mulnqprl  7652  mulnqpru  7653  distrlem5prl  7670  distrlem5pru  7671  recexprlemss1l  7719  recexprlemss1u  7720  lemul12a  8906  nnmulcl  9028  elfz0fzfz0  10218  fzo1fzo0n0  10276  fzofzim  10281  elfzodifsumelfzo  10294  le2sq2  10724  oddprmgt2  12327  infpnlem1  12553  lmodvsdi  13943
  Copyright terms: Public domain W3C validator