ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 115 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 366 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3454  nndi  6579  mulnqprl  7688  mulnqpru  7689  distrlem5prl  7706  distrlem5pru  7707  recexprlemss1l  7755  recexprlemss1u  7756  lemul12a  8942  nnmulcl  9064  elfz0fzfz0  10255  fzo1fzo0n0  10314  fzofzim  10319  elincfzoext  10329  elfzodifsumelfzo  10337  le2sq2  10767  swrdswrd  11164  oddprmgt2  12500  infpnlem1  12726  lmodvsdi  14117
  Copyright terms: Public domain W3C validator