ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 114 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 364 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exp43  370  reuss2  3407  nndi  6465  mulnqprl  7530  mulnqpru  7531  distrlem5prl  7548  distrlem5pru  7549  recexprlemss1l  7597  recexprlemss1u  7598  lemul12a  8778  nnmulcl  8899  elfz0fzfz0  10082  fzo1fzo0n0  10139  fzofzim  10144  elfzodifsumelfzo  10157  le2sq2  10551  oddprmgt2  12088  infpnlem1  12311
  Copyright terms: Public domain W3C validator