ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 114 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 364 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exp43  370  reuss2  3402  nndi  6454  mulnqprl  7509  mulnqpru  7510  distrlem5prl  7527  distrlem5pru  7528  recexprlemss1l  7576  recexprlemss1u  7577  lemul12a  8757  nnmulcl  8878  elfz0fzfz0  10061  fzo1fzo0n0  10118  fzofzim  10123  elfzodifsumelfzo  10136  le2sq2  10530  oddprmgt2  12066  infpnlem1  12289
  Copyright terms: Public domain W3C validator