| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp4b | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| 3 | 2 | exp4a 366 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exp43 372 reuss2 3454 nndi 6579 mulnqprl 7688 mulnqpru 7689 distrlem5prl 7706 distrlem5pru 7707 recexprlemss1l 7755 recexprlemss1u 7756 lemul12a 8942 nnmulcl 9064 elfz0fzfz0 10255 fzo1fzo0n0 10314 fzofzim 10319 elincfzoext 10329 elfzodifsumelfzo 10337 le2sq2 10767 swrdswrd 11164 oddprmgt2 12500 infpnlem1 12726 lmodvsdi 14117 |
| Copyright terms: Public domain | W3C validator |