ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 115 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 366 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3484  nndi  6640  mulnqprl  7763  mulnqpru  7764  distrlem5prl  7781  distrlem5pru  7782  recexprlemss1l  7830  recexprlemss1u  7831  lemul12a  9017  nnmulcl  9139  elfz0fzfz0  10330  fzo1fzo0n0  10391  fzofzim  10396  elincfzoext  10407  elfzodifsumelfzo  10415  le2sq2  10845  swrdswrd  11245  swrdccat3blem  11279  oddprmgt2  12664  infpnlem1  12890  lmodvsdi  14283
  Copyright terms: Public domain W3C validator