ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 115 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 366 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3444  nndi  6553  mulnqprl  7654  mulnqpru  7655  distrlem5prl  7672  distrlem5pru  7673  recexprlemss1l  7721  recexprlemss1u  7722  lemul12a  8908  nnmulcl  9030  elfz0fzfz0  10220  fzo1fzo0n0  10278  fzofzim  10283  elfzodifsumelfzo  10296  le2sq2  10726  oddprmgt2  12329  infpnlem1  12555  lmodvsdi  13945
  Copyright terms: Public domain W3C validator