Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exp4b | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
3 | 2 | exp4a 364 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exp43 370 reuss2 3402 nndi 6454 mulnqprl 7509 mulnqpru 7510 distrlem5prl 7527 distrlem5pru 7528 recexprlemss1l 7576 recexprlemss1u 7577 lemul12a 8757 nnmulcl 8878 elfz0fzfz0 10061 fzo1fzo0n0 10118 fzofzim 10123 elfzodifsumelfzo 10136 le2sq2 10530 oddprmgt2 12066 infpnlem1 12289 |
Copyright terms: Public domain | W3C validator |