ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b GIF version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21ex 115 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 366 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3484  nndi  6622  mulnqprl  7743  mulnqpru  7744  distrlem5prl  7761  distrlem5pru  7762  recexprlemss1l  7810  recexprlemss1u  7811  lemul12a  8997  nnmulcl  9119  elfz0fzfz0  10310  fzo1fzo0n0  10371  fzofzim  10376  elincfzoext  10386  elfzodifsumelfzo  10394  le2sq2  10824  swrdswrd  11223  swrdccat3blem  11257  oddprmgt2  12642  infpnlem1  12868  lmodvsdi  14260
  Copyright terms: Public domain W3C validator