ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmordi GIF version

Theorem nnmordi 6620
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))

Proof of Theorem nnmordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4667 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21expcom 116 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴 ∈ ω))
3 eleq2 2270 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
4 oveq2 5970 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝐶 ·o 𝑥) = (𝐶 ·o 𝐵))
54eleq2d 2276 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
63, 5imbi12d 234 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
76imbi2d 230 . . . . . . . . 9 (𝑥 = 𝐵 → ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥))) ↔ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
8 eleq2 2270 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
9 oveq2 5970 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝐶 ·o 𝑥) = (𝐶 ·o ∅))
109eleq2d 2276 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅)))
118, 10imbi12d 234 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅))))
12 eleq2 2270 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
13 oveq2 5970 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐶 ·o 𝑥) = (𝐶 ·o 𝑦))
1413eleq2d 2276 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))
1512, 14imbi12d 234 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦))))
16 eleq2 2270 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
17 oveq2 5970 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝐶 ·o 𝑥) = (𝐶 ·o suc 𝑦))
1817eleq2d 2276 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))
1916, 18imbi12d 234 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))
20 noel 3468 . . . . . . . . . . . 12 ¬ 𝐴 ∈ ∅
2120pm2.21i 647 . . . . . . . . . . 11 (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅))
2221a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅)))
23 elsuci 4463 . . . . . . . . . . . . . . . 16 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
24 nnmcl 6585 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·o 𝑦) ∈ ω)
25 simpl 109 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → 𝐶 ∈ ω)
2624, 25jca 306 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω))
27 nnaword1 6617 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝑦) ⊆ ((𝐶 ·o 𝑦) +o 𝐶))
2827sseld 3196 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
2928imim2d 54 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶))))
3029imp 124 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦))) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3130adantrl 478 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
32 nna0 6578 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ·o 𝑦) ∈ ω → ((𝐶 ·o 𝑦) +o ∅) = (𝐶 ·o 𝑦))
3332ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝑦) +o ∅) = (𝐶 ·o 𝑦))
34 nnaordi 6612 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ω ∧ (𝐶 ·o 𝑦) ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3534ancoms 268 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3635imp 124 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶))
3733, 36eqeltrrd 2284 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝑦) ∈ ((𝐶 ·o 𝑦) +o 𝐶))
38 oveq2 5970 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝑦 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝑦))
3938eleq1d 2275 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝑦 → ((𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶) ↔ (𝐶 ·o 𝑦) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4037, 39syl5ibrcom 157 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4140adantrr 479 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4231, 41jaod 719 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4326, 42sylan 283 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4423, 43syl5 32 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
45 nnmsuc 6581 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·o suc 𝑦) = ((𝐶 ·o 𝑦) +o 𝐶))
4645eleq2d 2276 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦) ↔ (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4746adantr 276 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦) ↔ (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4844, 47sylibrd 169 . . . . . . . . . . . . . 14 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))
4948exp43 372 . . . . . . . . . . . . 13 (𝐶 ∈ ω → (𝑦 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5049com12 30 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5150adantld 278 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5251impd 254 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))))
5311, 15, 19, 22, 52finds2 4662 . . . . . . . . 9 (𝑥 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥))))
547, 53vtoclga 2841 . . . . . . . 8 (𝐵 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
5554com23 78 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵 → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
5655exp4a 366 . . . . . 6 (𝐵 ∈ ω → (𝐴𝐵 → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
5756exp4a 366 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵 → (𝐴 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))))
582, 57mpdd 41 . . . 4 (𝐵 ∈ ω → (𝐴𝐵 → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
5958com34 83 . . 3 (𝐵 ∈ ω → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ ω → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
6059com24 87 . 2 (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
6160imp31 256 1 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  c0 3464  suc csuc 4425  ωcom 4651  (class class class)co 5962   +o coa 6517   ·o comu 6518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-oadd 6524  df-omul 6525
This theorem is referenced by:  nnmord  6621  nnm00  6634  mulclpi  7471
  Copyright terms: Public domain W3C validator