ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmordi GIF version

Theorem nnmordi 6412
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))

Proof of Theorem nnmordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4519 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21expcom 115 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴 ∈ ω))
3 eleq2 2203 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
4 oveq2 5782 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝐶 ·o 𝑥) = (𝐶 ·o 𝐵))
54eleq2d 2209 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
63, 5imbi12d 233 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
76imbi2d 229 . . . . . . . . 9 (𝑥 = 𝐵 → ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥))) ↔ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
8 eleq2 2203 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
9 oveq2 5782 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝐶 ·o 𝑥) = (𝐶 ·o ∅))
109eleq2d 2209 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅)))
118, 10imbi12d 233 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅))))
12 eleq2 2203 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
13 oveq2 5782 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐶 ·o 𝑥) = (𝐶 ·o 𝑦))
1413eleq2d 2209 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))
1512, 14imbi12d 233 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦))))
16 eleq2 2203 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
17 oveq2 5782 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝐶 ·o 𝑥) = (𝐶 ·o suc 𝑦))
1817eleq2d 2209 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))
1916, 18imbi12d 233 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))
20 noel 3367 . . . . . . . . . . . 12 ¬ 𝐴 ∈ ∅
2120pm2.21i 635 . . . . . . . . . . 11 (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅))
2221a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅)))
23 elsuci 4325 . . . . . . . . . . . . . . . 16 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
24 nnmcl 6377 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·o 𝑦) ∈ ω)
25 simpl 108 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → 𝐶 ∈ ω)
2624, 25jca 304 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω))
27 nnaword1 6409 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝑦) ⊆ ((𝐶 ·o 𝑦) +o 𝐶))
2827sseld 3096 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
2928imim2d 54 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶))))
3029imp 123 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦))) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3130adantrl 469 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
32 nna0 6370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ·o 𝑦) ∈ ω → ((𝐶 ·o 𝑦) +o ∅) = (𝐶 ·o 𝑦))
3332ad2antrr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝑦) +o ∅) = (𝐶 ·o 𝑦))
34 nnaordi 6404 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ω ∧ (𝐶 ·o 𝑦) ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3534ancoms 266 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3635imp 123 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶))
3733, 36eqeltrrd 2217 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝑦) ∈ ((𝐶 ·o 𝑦) +o 𝐶))
38 oveq2 5782 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝑦 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝑦))
3938eleq1d 2208 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝑦 → ((𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶) ↔ (𝐶 ·o 𝑦) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4037, 39syl5ibrcom 156 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4140adantrr 470 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4231, 41jaod 706 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4326, 42sylan 281 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4423, 43syl5 32 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
45 nnmsuc 6373 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·o suc 𝑦) = ((𝐶 ·o 𝑦) +o 𝐶))
4645eleq2d 2209 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦) ↔ (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4746adantr 274 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦) ↔ (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4844, 47sylibrd 168 . . . . . . . . . . . . . 14 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))
4948exp43 369 . . . . . . . . . . . . 13 (𝐶 ∈ ω → (𝑦 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5049com12 30 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5150adantld 276 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5251impd 252 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))))
5311, 15, 19, 22, 52finds2 4515 . . . . . . . . 9 (𝑥 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥))))
547, 53vtoclga 2752 . . . . . . . 8 (𝐵 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
5554com23 78 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵 → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
5655exp4a 363 . . . . . 6 (𝐵 ∈ ω → (𝐴𝐵 → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
5756exp4a 363 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵 → (𝐴 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))))
582, 57mpdd 41 . . . 4 (𝐵 ∈ ω → (𝐴𝐵 → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
5958com34 83 . . 3 (𝐵 ∈ ω → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ ω → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
6059com24 87 . 2 (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
6160imp31 254 1 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  c0 3363  suc csuc 4287  ωcom 4504  (class class class)co 5774   +o coa 6310   ·o comu 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318
This theorem is referenced by:  nnmord  6413  nnm00  6425  mulclpi  7136
  Copyright terms: Public domain W3C validator