ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmordi GIF version

Theorem nnmordi 6275
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4420 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21expcom 114 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴 ∈ ω))
3 eleq2 2151 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
4 oveq2 5660 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝐵))
54eleq2d 2157 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
63, 5imbi12d 232 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
76imbi2d 228 . . . . . . . . 9 (𝑥 = 𝐵 → ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))) ↔ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
8 eleq2 2151 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
9 oveq2 5660 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 ∅))
109eleq2d 2157 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅)))
118, 10imbi12d 232 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅))))
12 eleq2 2151 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
13 oveq2 5660 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 𝑦))
1413eleq2d 2157 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))
1512, 14imbi12d 232 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))))
16 eleq2 2151 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
17 oveq2 5660 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝐶 ·𝑜 𝑥) = (𝐶 ·𝑜 suc 𝑦))
1817eleq2d 2157 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))
1916, 18imbi12d 232 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))
20 noel 3290 . . . . . . . . . . . 12 ¬ 𝐴 ∈ ∅
2120pm2.21i 610 . . . . . . . . . . 11 (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅))
2221a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 ∅)))
23 elsuci 4230 . . . . . . . . . . . . . . . 16 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
24 nnmcl 6242 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·𝑜 𝑦) ∈ ω)
25 simpl 107 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → 𝐶 ∈ ω)
2624, 25jca 300 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω))
27 nnaword1 6272 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·𝑜 𝑦) ⊆ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
2827sseld 3024 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
2928imim2d 53 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))))
3029imp 122 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦))) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3130adantrl 462 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
32 nna0 6235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ·𝑜 𝑦) ∈ ω → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) = (𝐶 ·𝑜 𝑦))
3332ad2antrr 472 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) = (𝐶 ·𝑜 𝑦))
34 nnaordi 6267 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ω ∧ (𝐶 ·𝑜 𝑦) ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3534ancoms 264 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
3635imp 122 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝑦) +𝑜 ∅) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
3733, 36eqeltrrd 2165 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
38 oveq2 5660 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝑦))
3938eleq1d 2156 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝑦 → ((𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶) ↔ (𝐶 ·𝑜 𝑦) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4037, 39syl5ibrcom 155 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4140adantrr 463 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4231, 41jaod 672 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·𝑜 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4326, 42sylan 277 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4423, 43syl5 32 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
45 nnmsuc 6238 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·𝑜 suc 𝑦) = ((𝐶 ·𝑜 𝑦) +𝑜 𝐶))
4645eleq2d 2157 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4746adantr 270 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦) ↔ (𝐶 ·𝑜 𝐴) ∈ ((𝐶 ·𝑜 𝑦) +𝑜 𝐶)))
4844, 47sylibrd 167 . . . . . . . . . . . . . 14 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))
4948exp43 364 . . . . . . . . . . . . 13 (𝐶 ∈ ω → (𝑦 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
5049com12 30 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
5150adantld 272 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦))))))
5251impd 251 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 suc 𝑦)))))
5311, 15, 19, 22, 52finds2 4416 . . . . . . . . 9 (𝑥 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝑥))))
547, 53vtoclga 2685 . . . . . . . 8 (𝐵 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
5554com23 77 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵 → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
5655exp4a 358 . . . . . 6 (𝐵 ∈ ω → (𝐴𝐵 → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
5756exp4a 358 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵 → (𝐴 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))))
582, 57mpdd 40 . . . 4 (𝐵 ∈ ω → (𝐴𝐵 → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
5958com34 82 . . 3 (𝐵 ∈ ω → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ ω → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
6059com24 86 . 2 (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))))
6160imp31 252 1 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664   = wceq 1289  wcel 1438  c0 3286  suc csuc 4192  ωcom 4405  (class class class)co 5652   +𝑜 coa 6178   ·𝑜 comu 6179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-oadd 6185  df-omul 6186
This theorem is referenced by:  nnmord  6276  nnm00  6288  mulclpi  6887
  Copyright terms: Public domain W3C validator