ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp4 GIF version

Theorem iscnp4 13721
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃 " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
iscnp4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦)))
Distinct variable groups:   π‘₯,𝑦,𝐹   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   π‘₯,𝑃,𝑦   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦

Proof of Theorem iscnp4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnpf2 13710 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
213expa 1203 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
323adantl3 1155 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
4 simpll1 1036 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
5 simpll2 1037 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
6 simpll3 1038 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝑃 ∈ 𝑋)
7 simplr 528 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ))
8 topontop 13517 . . . . . . . . 9 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ 𝐾 ∈ Top)
95, 8syl 14 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝐾 ∈ Top)
10 eqid 2177 . . . . . . . . . 10 βˆͺ 𝐾 = βˆͺ 𝐾
1110neii1 13650 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝑦 βŠ† βˆͺ 𝐾)
129, 11sylancom 420 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝑦 βŠ† βˆͺ 𝐾)
1310ntropn 13620 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 βŠ† βˆͺ 𝐾) β†’ ((intβ€˜πΎ)β€˜π‘¦) ∈ 𝐾)
149, 12, 13syl2anc 411 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ ((intβ€˜πΎ)β€˜π‘¦) ∈ 𝐾)
15 simpr 110 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}))
163adantr 276 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
1716, 6ffvelcdmd 5653 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ (πΉβ€˜π‘ƒ) ∈ π‘Œ)
18 toponuni 13518 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ = βˆͺ 𝐾)
195, 18syl 14 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ π‘Œ = βˆͺ 𝐾)
2017, 19eleqtrd 2256 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ (πΉβ€˜π‘ƒ) ∈ βˆͺ 𝐾)
2120snssd 3738 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ {(πΉβ€˜π‘ƒ)} βŠ† βˆͺ 𝐾)
2210neiint 13648 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ {(πΉβ€˜π‘ƒ)} βŠ† βˆͺ 𝐾 ∧ 𝑦 βŠ† βˆͺ 𝐾) β†’ (𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}) ↔ {(πΉβ€˜π‘ƒ)} βŠ† ((intβ€˜πΎ)β€˜π‘¦)))
239, 21, 12, 22syl3anc 1238 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ (𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}) ↔ {(πΉβ€˜π‘ƒ)} βŠ† ((intβ€˜πΎ)β€˜π‘¦)))
2415, 23mpbid 147 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ {(πΉβ€˜π‘ƒ)} βŠ† ((intβ€˜πΎ)β€˜π‘¦))
25 fvexg 5535 . . . . . . . . . 10 ((𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝑃 ∈ 𝑋) β†’ (πΉβ€˜π‘ƒ) ∈ V)
267, 6, 25syl2anc 411 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ (πΉβ€˜π‘ƒ) ∈ V)
27 snssg 3727 . . . . . . . . 9 ((πΉβ€˜π‘ƒ) ∈ V β†’ ((πΉβ€˜π‘ƒ) ∈ ((intβ€˜πΎ)β€˜π‘¦) ↔ {(πΉβ€˜π‘ƒ)} βŠ† ((intβ€˜πΎ)β€˜π‘¦)))
2826, 27syl 14 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ ((πΉβ€˜π‘ƒ) ∈ ((intβ€˜πΎ)β€˜π‘¦) ↔ {(πΉβ€˜π‘ƒ)} βŠ† ((intβ€˜πΎ)β€˜π‘¦)))
2924, 28mpbird 167 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ (πΉβ€˜π‘ƒ) ∈ ((intβ€˜πΎ)β€˜π‘¦))
30 icnpimaex 13714 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ ((intβ€˜πΎ)β€˜π‘¦) ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ ((intβ€˜πΎ)β€˜π‘¦))) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))
314, 5, 6, 7, 14, 29, 30syl33anc 1253 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))
32 simpl1 1000 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3332ad2antrr 488 . . . . . . . 8 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
34 topontop 13517 . . . . . . . 8 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
3533, 34syl 14 . . . . . . 7 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ 𝐽 ∈ Top)
36 simprl 529 . . . . . . 7 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ π‘₯ ∈ 𝐽)
37 simprrl 539 . . . . . . 7 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ 𝑃 ∈ π‘₯)
38 opnneip 13662 . . . . . . 7 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ 𝑃 ∈ π‘₯) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}))
3935, 36, 37, 38syl3anc 1238 . . . . . 6 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}))
40 simprrr 540 . . . . . . 7 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦))
4110ntrss2 13624 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 βŠ† βˆͺ 𝐾) β†’ ((intβ€˜πΎ)β€˜π‘¦) βŠ† 𝑦)
429, 12, 41syl2anc 411 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ ((intβ€˜πΎ)β€˜π‘¦) βŠ† 𝑦)
4342adantr 276 . . . . . . 7 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ ((intβ€˜πΎ)β€˜π‘¦) βŠ† 𝑦)
4440, 43sstrd 3166 . . . . . 6 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† ((intβ€˜πΎ)β€˜π‘¦)))) β†’ (𝐹 β€œ π‘₯) βŠ† 𝑦)
4531, 39, 44reximssdv 2581 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) ∧ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦)
4645ralrimiva 2550 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦)
473, 46jca 306 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦))
4847ex 115 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦)))
49 simpll2 1037 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
5049, 8syl 14 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ 𝐾 ∈ Top)
51 simprl 529 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ 𝑦 ∈ 𝐾)
52 simprr 531 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ (πΉβ€˜π‘ƒ) ∈ 𝑦)
53 opnneip 13662 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦) β†’ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}))
5450, 51, 52, 53syl3anc 1238 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ 𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}))
55 simpl1 1000 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
5655ad2antrr 488 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
5756, 34syl 14 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ 𝐽 ∈ Top)
58 simprl 529 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}))
59 eqid 2177 . . . . . . . . . . . . . 14 βˆͺ 𝐽 = βˆͺ 𝐽
6059neii1 13650 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ π‘₯ βŠ† βˆͺ 𝐽)
6157, 58, 60syl2anc 411 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ π‘₯ βŠ† βˆͺ 𝐽)
6259ntropn 13620 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ π‘₯ βŠ† βˆͺ 𝐽) β†’ ((intβ€˜π½)β€˜π‘₯) ∈ 𝐽)
6357, 61, 62syl2anc 411 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ ((intβ€˜π½)β€˜π‘₯) ∈ 𝐽)
64 simpll3 1038 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ 𝑃 ∈ 𝑋)
6564adantr 276 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ 𝑃 ∈ 𝑋)
66 toponuni 13518 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
6756, 66syl 14 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ 𝑋 = βˆͺ 𝐽)
6865, 67eleqtrd 2256 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ 𝑃 ∈ βˆͺ 𝐽)
6968snssd 3738 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ {𝑃} βŠ† βˆͺ 𝐽)
7059neiint 13648 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ {𝑃} βŠ† βˆͺ 𝐽 ∧ π‘₯ βŠ† βˆͺ 𝐽) β†’ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ {𝑃} βŠ† ((intβ€˜π½)β€˜π‘₯)))
7157, 69, 61, 70syl3anc 1238 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ {𝑃} βŠ† ((intβ€˜π½)β€˜π‘₯)))
7258, 71mpbid 147 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ {𝑃} βŠ† ((intβ€˜π½)β€˜π‘₯))
73 snssg 3727 . . . . . . . . . . . . 13 (𝑃 ∈ 𝑋 β†’ (𝑃 ∈ ((intβ€˜π½)β€˜π‘₯) ↔ {𝑃} βŠ† ((intβ€˜π½)β€˜π‘₯)))
7465, 73syl 14 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ (𝑃 ∈ ((intβ€˜π½)β€˜π‘₯) ↔ {𝑃} βŠ† ((intβ€˜π½)β€˜π‘₯)))
7572, 74mpbird 167 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ 𝑃 ∈ ((intβ€˜π½)β€˜π‘₯))
7659ntrss2 13624 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ π‘₯ βŠ† βˆͺ 𝐽) β†’ ((intβ€˜π½)β€˜π‘₯) βŠ† π‘₯)
7757, 61, 76syl2anc 411 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ ((intβ€˜π½)β€˜π‘₯) βŠ† π‘₯)
78 imass2 5005 . . . . . . . . . . . . 13 (((intβ€˜π½)β€˜π‘₯) βŠ† π‘₯ β†’ (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)) βŠ† (𝐹 β€œ π‘₯))
7977, 78syl 14 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)) βŠ† (𝐹 β€œ π‘₯))
80 simprr 531 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ (𝐹 β€œ π‘₯) βŠ† 𝑦)
8179, 80sstrd 3166 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)) βŠ† 𝑦)
82 eleq2 2241 . . . . . . . . . . . . 13 (𝑧 = ((intβ€˜π½)β€˜π‘₯) β†’ (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ((intβ€˜π½)β€˜π‘₯)))
83 imaeq2 4967 . . . . . . . . . . . . . 14 (𝑧 = ((intβ€˜π½)β€˜π‘₯) β†’ (𝐹 β€œ 𝑧) = (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)))
8483sseq1d 3185 . . . . . . . . . . . . 13 (𝑧 = ((intβ€˜π½)β€˜π‘₯) β†’ ((𝐹 β€œ 𝑧) βŠ† 𝑦 ↔ (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)) βŠ† 𝑦))
8582, 84anbi12d 473 . . . . . . . . . . . 12 (𝑧 = ((intβ€˜π½)β€˜π‘₯) β†’ ((𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦) ↔ (𝑃 ∈ ((intβ€˜π½)β€˜π‘₯) ∧ (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)) βŠ† 𝑦)))
8685rspcev 2842 . . . . . . . . . . 11 ((((intβ€˜π½)β€˜π‘₯) ∈ 𝐽 ∧ (𝑃 ∈ ((intβ€˜π½)β€˜π‘₯) ∧ (𝐹 β€œ ((intβ€˜π½)β€˜π‘₯)) βŠ† 𝑦)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))
8763, 75, 81, 86syl12anc 1236 . . . . . . . . . 10 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) ∧ (π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃}) ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))
8887rexlimdvaa 2595 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦 β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
8954, 88embantd 56 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦)) β†’ ((𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))
9089ex 115 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦) β†’ ((𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))))
9190com23 78 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ ((𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝑦) β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))))
9291exp4a 366 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((𝑦 ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)}) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ (𝑦 ∈ 𝐾 β†’ ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))))
9392ralimdv2 2547 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦 β†’ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦))))
9493imdistanda 448 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))))
95 iscnp 13702 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘§ ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 β€œ 𝑧) βŠ† 𝑦)))))
9694, 95sylibrd 169 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)))
9748, 96impbid 129 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2738   βŠ† wss 3130  {csn 3593  βˆͺ cuni 3810   β€œ cima 4630  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  Topctop 13500  TopOnctopon 13513  intcnt 13596  neicnei 13641   CnP ccnp 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-top 13501  df-topon 13514  df-ntr 13599  df-nei 13642  df-cnp 13692
This theorem is referenced by:  cnnei  13735
  Copyright terms: Public domain W3C validator