Step | Hyp | Ref
| Expression |
1 | | cnpf2 12847 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expa 1193 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3adantl3 1145 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
4 | | simpll1 1026 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | simpll2 1027 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐾 ∈ (TopOn‘𝑌)) |
6 | | simpll3 1028 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑃 ∈ 𝑋) |
7 | | simplr 520 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
8 | | topontop 12652 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
9 | 5, 8 | syl 14 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐾 ∈ Top) |
10 | | eqid 2165 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
11 | 10 | neii1 12787 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ⊆ ∪ 𝐾) |
12 | 9, 11 | sylancom 417 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ⊆ ∪ 𝐾) |
13 | 10 | ntropn 12757 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ ((int‘𝐾)‘𝑦) ∈ 𝐾) |
14 | 9, 12, 13 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((int‘𝐾)‘𝑦) ∈ 𝐾) |
15 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
16 | 3 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐹:𝑋⟶𝑌) |
17 | 16, 6 | ffvelrnd 5621 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ 𝑌) |
18 | | toponuni 12653 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
19 | 5, 18 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑌 = ∪ 𝐾) |
20 | 17, 19 | eleqtrd 2245 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ ∪ 𝐾) |
21 | 20 | snssd 3718 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → {(𝐹‘𝑃)} ⊆ ∪
𝐾) |
22 | 10 | neiint 12785 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ {(𝐹‘𝑃)} ⊆ ∪
𝐾 ∧ 𝑦 ⊆ ∪ 𝐾) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
23 | 9, 21, 12, 22 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
24 | 15, 23 | mpbid 146 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦)) |
25 | | fvexg 5505 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑃 ∈ 𝑋) → (𝐹‘𝑃) ∈ V) |
26 | 7, 6, 25 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ V) |
27 | | snssg 3709 |
. . . . . . . . 9
⊢ ((𝐹‘𝑃) ∈ V → ((𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
28 | 26, 27 | syl 14 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
29 | 24, 28 | mpbird 166 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦)) |
30 | | icnpimaex 12851 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ ((int‘𝐾)‘𝑦) ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦))) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦))) |
31 | 4, 5, 6, 7, 14, 29, 30 | syl33anc 1243 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦))) |
32 | | simpl1 990 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
33 | 32 | ad2antrr 480 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ (TopOn‘𝑋)) |
34 | | topontop 12652 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
35 | 33, 34 | syl 14 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ Top) |
36 | | simprl 521 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ 𝐽) |
37 | | simprrl 529 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑃 ∈ 𝑥) |
38 | | opnneip 12799 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
39 | 35, 36, 37, 38 | syl3anc 1228 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
40 | | simprrr 530 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)) |
41 | 10 | ntrss2 12761 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
42 | 9, 12, 41 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
43 | 42 | adantr 274 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
44 | 40, 43 | sstrd 3152 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹 “ 𝑥) ⊆ 𝑦) |
45 | 31, 39, 44 | reximssdv 2570 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) |
46 | 45 | ralrimiva 2539 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) |
47 | 3, 46 | jca 304 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦)) |
48 | 47 | ex 114 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
49 | | simpll2 1027 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝐾 ∈ (TopOn‘𝑌)) |
50 | 49, 8 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝐾 ∈ Top) |
51 | | simprl 521 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑦 ∈ 𝐾) |
52 | | simprr 522 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → (𝐹‘𝑃) ∈ 𝑦) |
53 | | opnneip 12799 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
54 | 50, 51, 52, 53 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
55 | | simpl1 990 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
56 | 55 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋)) |
57 | 56, 34 | syl 14 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝐽 ∈ Top) |
58 | | simprl 521 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
59 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
60 | 59 | neii1 12787 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑥 ⊆ ∪ 𝐽) |
61 | 57, 58, 60 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑥 ⊆ ∪ 𝐽) |
62 | 59 | ntropn 12757 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑥) ∈ 𝐽) |
63 | 57, 61, 62 | syl2anc 409 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
64 | | simpll3 1028 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑃 ∈ 𝑋) |
65 | 64 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ 𝑋) |
66 | | toponuni 12653 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
67 | 56, 66 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑋 = ∪ 𝐽) |
68 | 65, 67 | eleqtrd 2245 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ ∪ 𝐽) |
69 | 68 | snssd 3718 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ∪ 𝐽) |
70 | 59 | neiint 12785 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ ∪ 𝐽
∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈
((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
71 | 57, 69, 61, 70 | syl3anc 1228 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
72 | 58, 71 | mpbid 146 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ((int‘𝐽)‘𝑥)) |
73 | | snssg 3709 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
74 | 65, 73 | syl 14 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
75 | 72, 74 | mpbird 166 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ ((int‘𝐽)‘𝑥)) |
76 | 59 | ntrss2 12761 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
77 | 57, 61, 76 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
78 | | imass2 4980 |
. . . . . . . . . . . . 13
⊢
(((int‘𝐽)‘𝑥) ⊆ 𝑥 → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹 “ 𝑥)) |
79 | 77, 78 | syl 14 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹 “ 𝑥)) |
80 | | simprr 522 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ 𝑥) ⊆ 𝑦) |
81 | 79, 80 | sstrd 3152 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦) |
82 | | eleq2 2230 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ((int‘𝐽)‘𝑥))) |
83 | | imaeq2 4942 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → (𝐹 “ 𝑧) = (𝐹 “ ((int‘𝐽)‘𝑥))) |
84 | 83 | sseq1d 3171 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) |
85 | 82, 84 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦))) |
86 | 85 | rspcev 2830 |
. . . . . . . . . . 11
⊢
((((int‘𝐽)‘𝑥) ∈ 𝐽 ∧ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
87 | 63, 75, 81, 86 | syl12anc 1226 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
88 | 87 | rexlimdvaa 2584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → (∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
89 | 54, 88 | embantd 56 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
90 | 89 | ex 114 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
91 | 90 | com23 78 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ((𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
92 | 91 | exp4a 364 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → (𝑦 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
93 | 92 | ralimdv2 2536 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦 → ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
94 | 93 | imdistanda 445 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
95 | | iscnp 12839 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
96 | 94, 95 | sylibrd 168 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) |
97 | 48, 96 | impbid 128 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |