| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp32 | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | expd 258 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: exp44 373 exp45 374 expr 375 anassrs 400 an13s 567 3impb 1202 xordidc 1419 f0rn0 5479 funfvima3 5828 isoini 5897 ovg 6095 fundmen 6909 distrlem1prl 7708 distrlem1pru 7709 caucvgprprlemaddq 7834 recexgt0sr 7899 axpre-suploclemres 8027 cnegexlem2 8261 mulgt1 8949 faclbnd 10899 swrdwrdsymbg 11131 divgcdcoprm0 12473 cncongr2 12476 oddpwdclemdvds 12542 oddpwdclemndvds 12543 infpnlem1 12732 imasabl 13722 cnpnei 14741 dvmptfsum 15247 zabsle1 15526 lgsquad2lem2 15609 2lgsoddprm 15640 |
| Copyright terms: Public domain | W3C validator |