![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exp32 | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | expd 258 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: exp44 373 exp45 374 expr 375 anassrs 400 an13s 567 3impb 1199 xordidc 1399 f0rn0 5412 funfvima3 5752 isoini 5821 ovg 6015 fundmen 6808 distrlem1prl 7583 distrlem1pru 7584 caucvgprprlemaddq 7709 recexgt0sr 7774 axpre-suploclemres 7902 cnegexlem2 8135 mulgt1 8822 faclbnd 10723 divgcdcoprm0 12103 cncongr2 12106 oddpwdclemdvds 12172 oddpwdclemndvds 12173 infpnlem1 12359 cnpnei 13804 zabsle1 14485 |
Copyright terms: Public domain | W3C validator |