ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 GIF version

Theorem exp32 358
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
exp32 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
21ex 114 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32expd 255 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 107
This theorem is referenced by:  exp44  366  exp45  367  expr  368  anassrs  393  an13s  535  3impb  1140  xordidc  1336  f0rn0  5220  funfvima3  5544  isoini  5613  ovg  5799  fundmen  6579  distrlem1prl  7204  distrlem1pru  7205  caucvgprprlemaddq  7330  recexgt0sr  7382  cnegexlem2  7721  mulgt1  8387  faclbnd  10212  divgcdcoprm0  11424  cncongr2  11427  oddpwdclemdvds  11489  oddpwdclemndvds  11490
  Copyright terms: Public domain W3C validator