![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exp32 | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | expd 255 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: exp44 366 exp45 367 expr 368 anassrs 393 an13s 535 3impb 1140 xordidc 1336 f0rn0 5220 funfvima3 5544 isoini 5613 ovg 5799 fundmen 6579 distrlem1prl 7204 distrlem1pru 7205 caucvgprprlemaddq 7330 recexgt0sr 7382 cnegexlem2 7721 mulgt1 8387 faclbnd 10212 divgcdcoprm0 11424 cncongr2 11427 oddpwdclemdvds 11489 oddpwdclemndvds 11490 |
Copyright terms: Public domain | W3C validator |