ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 GIF version

Theorem exp32 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
exp32 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
21ex 115 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32expd 258 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  exp44  373  exp45  374  expr  375  anassrs  400  an13s  567  3impb  1223  xordidc  1441  f0rn0  5516  funfvima3  5866  isoini  5935  ovg  6135  fundmen  6949  distrlem1prl  7757  distrlem1pru  7758  caucvgprprlemaddq  7883  recexgt0sr  7948  axpre-suploclemres  8076  cnegexlem2  8310  mulgt1  8998  faclbnd  10950  swrdwrdsymbg  11182  pfxccatin12lem2a  11245  pfxccat3  11252  swrdccat  11253  divgcdcoprm0  12609  cncongr2  12612  oddpwdclemdvds  12678  oddpwdclemndvds  12679  infpnlem1  12868  imasabl  13859  cnpnei  14878  dvmptfsum  15384  zabsle1  15663  lgsquad2lem2  15746  2lgsoddprm  15777
  Copyright terms: Public domain W3C validator