ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 GIF version

Theorem exp32 363
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
exp32 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
21ex 114 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32expd 256 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  exp44  371  exp45  372  expr  373  anassrs  398  an13s  557  3impb  1189  xordidc  1389  f0rn0  5382  funfvima3  5718  isoini  5786  ovg  5980  fundmen  6772  distrlem1prl  7523  distrlem1pru  7524  caucvgprprlemaddq  7649  recexgt0sr  7714  axpre-suploclemres  7842  cnegexlem2  8074  mulgt1  8758  faclbnd  10654  divgcdcoprm0  12033  cncongr2  12036  oddpwdclemdvds  12102  oddpwdclemndvds  12103  infpnlem1  12289  cnpnei  12859  zabsle1  13540
  Copyright terms: Public domain W3C validator