Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exp32 | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | expd 256 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: exp44 371 exp45 372 expr 373 anassrs 398 an13s 557 3impb 1189 xordidc 1389 f0rn0 5382 funfvima3 5718 isoini 5786 ovg 5980 fundmen 6772 distrlem1prl 7523 distrlem1pru 7524 caucvgprprlemaddq 7649 recexgt0sr 7714 axpre-suploclemres 7842 cnegexlem2 8074 mulgt1 8758 faclbnd 10654 divgcdcoprm0 12033 cncongr2 12036 oddpwdclemdvds 12102 oddpwdclemndvds 12103 infpnlem1 12289 cnpnei 12859 zabsle1 13540 |
Copyright terms: Public domain | W3C validator |