ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 GIF version

Theorem exp32 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
exp32 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
21ex 115 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32expd 258 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  exp44  373  exp45  374  expr  375  anassrs  400  an13s  567  3impb  1199  xordidc  1399  f0rn0  5412  funfvima3  5752  isoini  5821  ovg  6015  fundmen  6808  distrlem1prl  7583  distrlem1pru  7584  caucvgprprlemaddq  7709  recexgt0sr  7774  axpre-suploclemres  7902  cnegexlem2  8135  mulgt1  8822  faclbnd  10723  divgcdcoprm0  12103  cncongr2  12106  oddpwdclemdvds  12172  oddpwdclemndvds  12173  infpnlem1  12359  cnpnei  13804  zabsle1  14485
  Copyright terms: Public domain W3C validator