| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp32 | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | expd 258 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: exp44 373 exp45 374 expr 375 anassrs 400 an13s 567 3impb 1223 xordidc 1441 f0rn0 5522 funfvima3 5877 isoini 5948 ovg 6150 fundmen 6967 distrlem1prl 7777 distrlem1pru 7778 caucvgprprlemaddq 7903 recexgt0sr 7968 axpre-suploclemres 8096 cnegexlem2 8330 mulgt1 9018 faclbnd 10971 swrdwrdsymbg 11204 pfxccatin12lem2a 11267 pfxccat3 11274 swrdccat 11275 divgcdcoprm0 12631 cncongr2 12634 oddpwdclemdvds 12700 oddpwdclemndvds 12701 infpnlem1 12890 imasabl 13881 cnpnei 14901 dvmptfsum 15407 zabsle1 15686 lgsquad2lem2 15769 2lgsoddprm 15800 |
| Copyright terms: Public domain | W3C validator |