| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp32 | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | expd 258 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: exp44 373 exp45 374 expr 375 anassrs 400 an13s 567 3impb 1201 xordidc 1410 f0rn0 5455 funfvima3 5799 isoini 5868 ovg 6066 fundmen 6874 distrlem1prl 7668 distrlem1pru 7669 caucvgprprlemaddq 7794 recexgt0sr 7859 axpre-suploclemres 7987 cnegexlem2 8221 mulgt1 8909 faclbnd 10852 divgcdcoprm0 12296 cncongr2 12299 oddpwdclemdvds 12365 oddpwdclemndvds 12366 infpnlem1 12555 imasabl 13544 cnpnei 14563 dvmptfsum 15069 zabsle1 15348 lgsquad2lem2 15431 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |