![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exp32 | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | expd 258 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: exp44 373 exp45 374 expr 375 anassrs 400 an13s 567 3impb 1201 xordidc 1410 f0rn0 5448 funfvima3 5792 isoini 5861 ovg 6057 fundmen 6860 distrlem1prl 7642 distrlem1pru 7643 caucvgprprlemaddq 7768 recexgt0sr 7833 axpre-suploclemres 7961 cnegexlem2 8195 mulgt1 8882 faclbnd 10812 divgcdcoprm0 12239 cncongr2 12242 oddpwdclemdvds 12308 oddpwdclemndvds 12309 infpnlem1 12497 imasabl 13406 cnpnei 14387 zabsle1 15115 |
Copyright terms: Public domain | W3C validator |