ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp32 GIF version

Theorem exp32 365
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp32.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
exp32 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem exp32
StepHypRef Expression
1 exp32.1 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
21ex 115 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
32expd 258 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  exp44  373  exp45  374  expr  375  anassrs  400  an13s  567  3impb  1201  xordidc  1410  f0rn0  5455  funfvima3  5799  isoini  5868  ovg  6066  fundmen  6874  distrlem1prl  7668  distrlem1pru  7669  caucvgprprlemaddq  7794  recexgt0sr  7859  axpre-suploclemres  7987  cnegexlem2  8221  mulgt1  8909  faclbnd  10852  divgcdcoprm0  12296  cncongr2  12299  oddpwdclemdvds  12365  oddpwdclemndvds  12366  infpnlem1  12555  imasabl  13544  cnpnei  14563  dvmptfsum  15069  zabsle1  15348  lgsquad2lem2  15431  2lgsoddprm  15462
  Copyright terms: Public domain W3C validator