| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp32 | GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp32.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| exp32 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp32.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 3 | 2 | expd 258 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: exp44 373 exp45 374 expr 375 anassrs 400 an13s 567 3impb 1223 xordidc 1441 f0rn0 5516 funfvima3 5866 isoini 5935 ovg 6135 fundmen 6949 distrlem1prl 7757 distrlem1pru 7758 caucvgprprlemaddq 7883 recexgt0sr 7948 axpre-suploclemres 8076 cnegexlem2 8310 mulgt1 8998 faclbnd 10950 swrdwrdsymbg 11182 pfxccatin12lem2a 11245 pfxccat3 11252 swrdccat 11253 divgcdcoprm0 12609 cncongr2 12612 oddpwdclemdvds 12678 oddpwdclemndvds 12679 infpnlem1 12868 imasabl 13859 cnpnei 14878 dvmptfsum 15384 zabsle1 15663 lgsquad2lem2 15746 2lgsoddprm 15777 |
| Copyright terms: Public domain | W3C validator |