![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabm | GIF version |
Description: Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.) |
Ref | Expression |
---|---|
opabm | ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 4118 | . . 3 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | 1 | exbii 1552 | . 2 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
3 | exrot3 1636 | . 2 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
4 | vex 2644 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | vex 2644 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | opex 4089 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V |
7 | 6 | isseti 2649 | . . . 4 ⊢ ∃𝑧 𝑧 = 〈𝑥, 𝑦〉 |
8 | 19.41v 1841 | . . . 4 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑧 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
9 | 7, 8 | mpbiran 892 | . . 3 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
10 | 9 | 2exbii 1553 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 2, 3, 10 | 3bitri 205 | 1 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1299 ∃wex 1436 ∈ wcel 1448 〈cop 3477 {copab 3928 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-opab 3930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |