| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabm | GIF version | ||
| Description: Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.) |
| Ref | Expression |
|---|---|
| opabm | ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 4322 | . . 3 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 2 | 1 | exbii 1629 | . 2 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 3 | exrot3 1714 | . 2 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 4 | vex 2779 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 5 | vex 2779 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | opex 4291 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 7 | 6 | isseti 2785 | . . . 4 ⊢ ∃𝑧 𝑧 = 〈𝑥, 𝑦〉 |
| 8 | 19.41v 1927 | . . . 4 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑧 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 9 | 7, 8 | mpbiran 943 | . . 3 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
| 10 | 9 | 2exbii 1630 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
| 11 | 2, 3, 10 | 3bitri 206 | 1 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 〈cop 3646 {copab 4120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 |
| This theorem is referenced by: lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |