ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvoprab GIF version

Theorem cnvoprab 6229
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
cnvoprab.x 𝑥𝜓
cnvoprab.y 𝑦𝜓
cnvoprab.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprab.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧,𝑎)

Proof of Theorem cnvoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 excom 1664 . . . . . 6 (∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
2 nfv 1528 . . . . . . . . . . 11 𝑥 𝑤 = ⟨𝑎, 𝑧
3 cnvoprab.x . . . . . . . . . . 11 𝑥𝜓
42, 3nfan 1565 . . . . . . . . . 10 𝑥(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
54nfex 1637 . . . . . . . . 9 𝑥𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
6 nfv 1528 . . . . . . . . . . . 12 𝑦 𝑤 = ⟨𝑎, 𝑧
7 cnvoprab.y . . . . . . . . . . . 12 𝑦𝜓
86, 7nfan 1565 . . . . . . . . . . 11 𝑦(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
98nfex 1637 . . . . . . . . . 10 𝑦𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
10 vex 2740 . . . . . . . . . . . 12 𝑥 ∈ V
11 vex 2740 . . . . . . . . . . . 12 𝑦 ∈ V
1210, 11opex 4226 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
13 opeq1 3776 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ⟨𝑎, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1413eqeq2d 2189 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝑤 = ⟨𝑎, 𝑧⟩ ↔ 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
15 cnvoprab.1 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
1614, 15anbi12d 473 . . . . . . . . . . 11 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
1712, 16spcev 2832 . . . . . . . . . 10 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
189, 17exlimi 1594 . . . . . . . . 9 (∃𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
195, 18exlimi 1594 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
20 cnvoprab.2 . . . . . . . . . . 11 (𝜓𝑎 ∈ (V × V))
2120adantl 277 . . . . . . . . . 10 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → 𝑎 ∈ (V × V))
22 vex 2740 . . . . . . . . . . . 12 𝑎 ∈ V
23 1stexg 6162 . . . . . . . . . . . 12 (𝑎 ∈ V → (1st𝑎) ∈ V)
2422, 23ax-mp 5 . . . . . . . . . . 11 (1st𝑎) ∈ V
25 2ndexg 6163 . . . . . . . . . . . 12 (𝑎 ∈ V → (2nd𝑎) ∈ V)
2622, 25ax-mp 5 . . . . . . . . . . 11 (2nd𝑎) ∈ V
27 eqcom 2179 . . . . . . . . . . . . . . 15 ((1st𝑎) = 𝑥𝑥 = (1st𝑎))
28 eqcom 2179 . . . . . . . . . . . . . . 15 ((2nd𝑎) = 𝑦𝑦 = (2nd𝑎))
2927, 28anbi12i 460 . . . . . . . . . . . . . 14 (((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦) ↔ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎)))
30 eqopi 6167 . . . . . . . . . . . . . 14 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦)) → 𝑎 = ⟨𝑥, 𝑦⟩)
3129, 30sylan2br 288 . . . . . . . . . . . . 13 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → 𝑎 = ⟨𝑥, 𝑦⟩)
3216bicomd 141 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
3331, 32syl 14 . . . . . . . . . . . 12 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
344, 8, 33spc2ed 6228 . . . . . . . . . . 11 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) ∈ V ∧ (2nd𝑎) ∈ V)) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3524, 26, 34mpanr12 439 . . . . . . . . . 10 (𝑎 ∈ (V × V) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3621, 35mpcom 36 . . . . . . . . 9 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3736exlimiv 1598 . . . . . . . 8 (∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3819, 37impbii 126 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3938exbii 1605 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
40 exrot3 1690 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
411, 39, 403bitr2ri 209 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
4241abbii 2293 . . . 4 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
43 df-oprab 5873 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
44 df-opab 4062 . . . 4 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
4542, 43, 443eqtr4ri 2209 . . 3 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4645cnveqi 4798 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
47 cnvopab 5026 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
4846, 47eqtr3i 2200 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wnf 1460  wex 1492  wcel 2148  {cab 2163  Vcvv 2737  cop 3594  {copab 4060   × cxp 4621  ccnv 4622  cfv 5212  {coprab 5870  1st c1st 6133  2nd c2nd 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fo 5218  df-fv 5220  df-oprab 5873  df-1st 6135  df-2nd 6136
This theorem is referenced by:  f1od2  6230
  Copyright terms: Public domain W3C validator