ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab GIF version

Theorem rnoprab 5936
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5900 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
21rneqi 4839 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
3 rnopab 4858 . 2 ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 exrot3 1683 . . . 4 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 vex 2733 . . . . . . . 8 𝑥 ∈ V
6 vex 2733 . . . . . . . 8 𝑦 ∈ V
75, 6opex 4214 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
87isseti 2738 . . . . . 6 𝑤 𝑤 = ⟨𝑥, 𝑦
9 19.41v 1895 . . . . . 6 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
108, 9mpbiran 935 . . . . 5 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
11102exbii 1599 . . . 4 (∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
124, 11bitri 183 . . 3 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
1312abbii 2286 . 2 {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦𝜑}
142, 3, 133eqtri 2195 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wex 1485  {cab 2156  cop 3586  {copab 4049  ran crn 4612  {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-oprab 5857
This theorem is referenced by:  rnoprab2  5937
  Copyright terms: Public domain W3C validator