Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnoprab | GIF version |
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) |
Ref | Expression |
---|---|
rnoprab | ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 5900 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | 1 | rneqi 4839 | . 2 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
3 | rnopab 4858 | . 2 ⊢ ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
4 | exrot3 1683 | . . . 4 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | vex 2733 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | opex 4214 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V |
8 | 7 | isseti 2738 | . . . . . 6 ⊢ ∃𝑤 𝑤 = 〈𝑥, 𝑦〉 |
9 | 19.41v 1895 | . . . . . 6 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑤 𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
10 | 8, 9 | mpbiran 935 | . . . . 5 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
11 | 10 | 2exbii 1599 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
12 | 4, 11 | bitri 183 | . . 3 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
13 | 12 | abbii 2286 | . 2 ⊢ {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
14 | 2, 3, 13 | 3eqtri 2195 | 1 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 {cab 2156 〈cop 3586 {copab 4049 ran crn 4612 {coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 df-oprab 5857 |
This theorem is referenced by: rnoprab2 5937 |
Copyright terms: Public domain | W3C validator |