![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnoprab | GIF version |
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) |
Ref | Expression |
---|---|
rnoprab | ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 5965 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | 1 | rneqi 4890 | . 2 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
3 | rnopab 4909 | . 2 ⊢ ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
4 | exrot3 1701 | . . . 4 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | vex 2763 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | vex 2763 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | opex 4258 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V |
8 | 7 | isseti 2768 | . . . . . 6 ⊢ ∃𝑤 𝑤 = 〈𝑥, 𝑦〉 |
9 | 19.41v 1914 | . . . . . 6 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑤 𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
10 | 8, 9 | mpbiran 942 | . . . . 5 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
11 | 10 | 2exbii 1617 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
12 | 4, 11 | bitri 184 | . . 3 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
13 | 12 | abbii 2309 | . 2 ⊢ {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
14 | 2, 3, 13 | 3eqtri 2218 | 1 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 {cab 2179 〈cop 3621 {copab 4089 ran crn 4660 {coprab 5919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 df-oprab 5922 |
This theorem is referenced by: rnoprab2 6002 |
Copyright terms: Public domain | W3C validator |