ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab GIF version

Theorem rnoprab 6002
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5966 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
21rneqi 4891 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
3 rnopab 4910 . 2 ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 exrot3 1701 . . . 4 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 vex 2763 . . . . . . . 8 𝑥 ∈ V
6 vex 2763 . . . . . . . 8 𝑦 ∈ V
75, 6opex 4259 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
87isseti 2768 . . . . . 6 𝑤 𝑤 = ⟨𝑥, 𝑦
9 19.41v 1914 . . . . . 6 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
108, 9mpbiran 942 . . . . 5 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
11102exbii 1617 . . . 4 (∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
124, 11bitri 184 . . 3 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
1312abbii 2309 . 2 {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦𝜑}
142, 3, 133eqtri 2218 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  {cab 2179  cop 3622  {copab 4090  ran crn 4661  {coprab 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671  df-oprab 5923
This theorem is referenced by:  rnoprab2  6003
  Copyright terms: Public domain W3C validator