| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rnoprab | GIF version | ||
| Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| rnoprab | ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfoprab2 5969 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | 1 | rneqi 4894 | . 2 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | 
| 3 | rnopab 4913 | . 2 ⊢ ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 4 | exrot3 1704 | . . . 4 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | vex 2766 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | vex 2766 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | opex 4262 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | 
| 8 | 7 | isseti 2771 | . . . . . 6 ⊢ ∃𝑤 𝑤 = 〈𝑥, 𝑦〉 | 
| 9 | 19.41v 1917 | . . . . . 6 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑤 𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 10 | 8, 9 | mpbiran 942 | . . . . 5 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) | 
| 11 | 10 | 2exbii 1620 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | 
| 12 | 4, 11 | bitri 184 | . . 3 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) | 
| 13 | 12 | abbii 2312 | . 2 ⊢ {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} | 
| 14 | 2, 3, 13 | 3eqtri 2221 | 1 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 {cab 2182 〈cop 3625 {copab 4093 ran crn 4664 {coprab 5923 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-oprab 5926 | 
| This theorem is referenced by: rnoprab2 6006 | 
| Copyright terms: Public domain | W3C validator |