ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexiunxp GIF version

Theorem rexiunxp 4818
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 4820, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rexiunxp (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem rexiunxp
StepHypRef Expression
1 eliunxp 4815 . . . . . 6 (𝑥 𝑦𝐴 ({𝑦} × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21anbi1i 458 . . . . 5 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
3 19.41vv 1926 . . . . 5 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
42, 3bitr4i 187 . . . 4 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
54exbii 1627 . . 3 (∃𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ ∃𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
6 exrot3 1712 . . . 4 (∃𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
7 anass 401 . . . . . . 7 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
87exbii 1627 . . . . . 6 (∃𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑥(𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
9 vex 2774 . . . . . . . 8 𝑦 ∈ V
10 vex 2774 . . . . . . . 8 𝑧 ∈ V
119, 10opex 4272 . . . . . . 7 𝑦, 𝑧⟩ ∈ V
12 ralxp.1 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
1312anbi2d 464 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓)))
1411, 13ceqsexv 2810 . . . . . 6 (∃𝑥(𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
158, 14bitri 184 . . . . 5 (∃𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
16152exbii 1628 . . . 4 (∃𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
176, 16bitri 184 . . 3 (∃𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
185, 17bitri 184 . 2 (∃𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
19 df-rex 2489 . 2 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) ∧ 𝜑))
20 r2ex 2525 . 2 (∃𝑦𝐴𝑧𝐵 𝜓 ↔ ∃𝑦𝑧((𝑦𝐴𝑧𝐵) ∧ 𝜓))
2118, 19, 203bitr4i 212 1 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  wrex 2484  {csn 3632  cop 3635   ciun 3926   × cxp 4671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-iun 3928  df-opab 4105  df-xp 4679  df-rel 4680
This theorem is referenced by:  rexxp  4820
  Copyright terms: Public domain W3C validator