Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq2 | GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq2 5372 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) | |
2 | foeq2 5390 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–onto→𝐶 ↔ 𝐹:𝐵–onto→𝐶)) | |
3 | 1, 2 | anbi12d 465 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶))) |
4 | df-f1o 5178 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
5 | df-f1o 5178 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹:𝐵–1-1→𝐶 ∧ 𝐹:𝐵–onto→𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 –1-1→wf1 5168 –onto→wfo 5169 –1-1-onto→wf1o 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 |
This theorem is referenced by: f1oeq23 5407 f1oeq123d 5410 f1oeq2d 5411 f1osng 5456 isoeq4 5755 bren 6693 f1dmvrnfibi 6889 summodclem3 11281 summodclem2a 11282 summodc 11284 fsum3 11288 fsumf1o 11291 sumsnf 11310 fprodf1o 11489 prodsnf 11493 |
Copyright terms: Public domain | W3C validator |