Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq3d GIF version

Theorem f1oeq3d 5376
 Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
f1oeq3d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
f1oeq3d (𝜑 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3d
StepHypRef Expression
1 f1oeq3d.1 . 2 (𝜑𝐴 = 𝐵)
2 f1oeq3 5370 . 2 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1332  –1-1-onto→wf1o 5134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2123 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1732  df-clab 2128  df-cleq 2134  df-clel 2137  df-in 3084  df-ss 3091  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142 This theorem is referenced by:  fprodssdc  11420
 Copyright terms: Public domain W3C validator