| Step | Hyp | Ref
| Expression |
| 1 | | mulcl 8023 |
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑚 · 𝑦) ∈ ℂ) |
| 2 | 1 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑚 · 𝑦) ∈ ℂ) |
| 3 | | mulcom 8025 |
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑚 · 𝑦) = (𝑦 · 𝑚)) |
| 4 | 3 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑚 · 𝑦) = (𝑦 · 𝑚)) |
| 5 | | mulass 8027 |
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑥) = (𝑚 · (𝑦 · 𝑥))) |
| 6 | 5 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑚 · 𝑦) · 𝑥) = (𝑚 · (𝑦 · 𝑥))) |
| 7 | | prodmolem3.5 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
| 8 | 7 | simpld 112 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 9 | | nnuz 9654 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 10 | 8, 9 | eleqtrdi 2289 |
. . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 11 | | prodmolem3.6 |
. . . . . 6
⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) |
| 12 | | f1ocnv 5520 |
. . . . . 6
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝜑 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) |
| 14 | | prodmolem3.7 |
. . . . 5
⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) |
| 15 | | f1oco 5530 |
. . . . 5
⊢ ((◡𝑓:𝐴–1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto→𝐴) → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) |
| 17 | 7 | ancomd 267 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ)) |
| 18 | 17, 14, 11 | nnf1o 11558 |
. . . . . 6
⊢ (𝜑 → 𝑀 = 𝑁) |
| 19 | 18 | oveq2d 5941 |
. . . . 5
⊢ (𝜑 → (1...𝑀) = (1...𝑁)) |
| 20 | 19 | f1oeq2d 5503 |
. . . 4
⊢ (𝜑 → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) |
| 21 | 16, 20 | mpbird 167 |
. . 3
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 22 | | prodmodc.3 |
. . . . 5
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) |
| 23 | | breq1 4037 |
. . . . . 6
⊢ (𝑗 = 𝑚 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑚 ≤ (♯‘𝐴))) |
| 24 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → (𝑓‘𝑗) = (𝑓‘𝑚)) |
| 25 | 24 | csbeq1d 3091 |
. . . . . 6
⊢ (𝑗 = 𝑚 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 26 | 23, 25 | ifbieq1d 3584 |
. . . . 5
⊢ (𝑗 = 𝑚 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑚 ≤ (♯‘𝐴), ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 1)) |
| 27 | | elnnuz 9655 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
| 28 | 27 | biimpri 133 |
. . . . . 6
⊢ (𝑚 ∈
(ℤ≥‘1) → 𝑚 ∈ ℕ) |
| 29 | 28 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ 𝑚 ∈
ℕ) |
| 30 | | f1of 5507 |
. . . . . . . . . 10
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → 𝑓:(1...𝑀)⟶𝐴) |
| 31 | 11, 30 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑓:(1...𝑀)⟶𝐴) |
| 32 | 31 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑓:(1...𝑀)⟶𝐴) |
| 33 | | 1zzd 9370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) → 1
∈ ℤ) |
| 34 | 8 | nnzd 9464 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑀 ∈
ℤ) |
| 36 | | eluzelz 9627 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘1) → 𝑚 ∈ ℤ) |
| 37 | 36 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑚 ∈
ℤ) |
| 38 | 33, 35, 37 | 3jca 1179 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
(1 ∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑚
∈ ℤ)) |
| 39 | | eluzle 9630 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘1) → 1 ≤ 𝑚) |
| 40 | 39 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) → 1
≤ 𝑚) |
| 41 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑚 ≤ (♯‘𝐴)) |
| 42 | 8 | nnnn0d 9319 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 43 | | hashfz1 10892 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) |
| 44 | 42, 43 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(1...𝑀)) = 𝑀) |
| 45 | | 1zzd 9370 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℤ) |
| 46 | 45, 34 | fzfigd 10540 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 47 | 46, 11 | fihasheqf1od 10898 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(1...𝑀)) = (♯‘𝐴)) |
| 48 | 44, 47 | eqtr3d 2231 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 = (♯‘𝐴)) |
| 49 | 48 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑀 = (♯‘𝐴)) |
| 50 | 41, 49 | breqtrrd 4062 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑚 ≤ 𝑀) |
| 51 | 40, 50 | jca 306 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
(1 ≤ 𝑚 ∧ 𝑚 ≤ 𝑀)) |
| 52 | | elfz2 10107 |
. . . . . . . . 9
⊢ (𝑚 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (1 ≤
𝑚 ∧ 𝑚 ≤ 𝑀))) |
| 53 | 38, 51, 52 | sylanbrc 417 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑚 ∈ (1...𝑀)) |
| 54 | 32, 53 | ffvelcdmd 5701 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
(𝑓‘𝑚) ∈ 𝐴) |
| 55 | | prodmo.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 56 | 55 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 57 | 56 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 58 | | nfcsb1v 3117 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 |
| 59 | 58 | nfel1 2350 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
| 60 | | csbeq1a 3093 |
. . . . . . . . 9
⊢ (𝑘 = (𝑓‘𝑚) → 𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 61 | 60 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = (𝑓‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 62 | 59, 61 | rspc 2862 |
. . . . . . 7
⊢ ((𝑓‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 63 | 54, 57, 62 | sylc 62 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 64 | | 1cnd 8059 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ ¬ 𝑚 ≤
(♯‘𝐴)) → 1
∈ ℂ) |
| 65 | 29 | nnzd 9464 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ 𝑚 ∈
ℤ) |
| 66 | 48, 34 | eqeltrrd 2274 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐴) ∈
ℤ) |
| 67 | 66 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (♯‘𝐴)
∈ ℤ) |
| 68 | | zdcle 9419 |
. . . . . . 7
⊢ ((𝑚 ∈ ℤ ∧
(♯‘𝐴) ∈
ℤ) → DECID 𝑚 ≤ (♯‘𝐴)) |
| 69 | 65, 67, 68 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ DECID 𝑚 ≤ (♯‘𝐴)) |
| 70 | 63, 64, 69 | ifcldadc 3591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ if(𝑚 ≤
(♯‘𝐴),
⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 1) ∈ ℂ) |
| 71 | 22, 26, 29, 70 | fvmptd3 5658 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐺‘𝑚) = if(𝑚 ≤ (♯‘𝐴), ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 1)) |
| 72 | 71, 70 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐺‘𝑚) ∈
ℂ) |
| 73 | | prodmodclem3.4 |
. . . . 5
⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) |
| 74 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → (𝐾‘𝑗) = (𝐾‘𝑚)) |
| 75 | 74 | csbeq1d 3091 |
. . . . . 6
⊢ (𝑗 = 𝑚 → ⦋(𝐾‘𝑗) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
| 76 | 23, 75 | ifbieq1d 3584 |
. . . . 5
⊢ (𝑗 = 𝑚 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑚 ≤ (♯‘𝐴), ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 1)) |
| 77 | 14 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝐾:(1...𝑁)–1-1-onto→𝐴) |
| 78 | | f1of 5507 |
. . . . . . . . 9
⊢ (𝐾:(1...𝑁)–1-1-onto→𝐴 → 𝐾:(1...𝑁)⟶𝐴) |
| 79 | 77, 78 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝐾:(1...𝑁)⟶𝐴) |
| 80 | 19 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
(1...𝑀) = (1...𝑁)) |
| 81 | 53, 80 | eleqtrd 2275 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
𝑚 ∈ (1...𝑁)) |
| 82 | 79, 81 | ffvelcdmd 5701 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
(𝐾‘𝑚) ∈ 𝐴) |
| 83 | | nfcsb1v 3117 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 |
| 84 | 83 | nfel1 2350 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
| 85 | | csbeq1a 3093 |
. . . . . . . . 9
⊢ (𝑘 = (𝐾‘𝑚) → 𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
| 86 | 85 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = (𝐾‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 87 | 84, 86 | rspc 2862 |
. . . . . . 7
⊢ ((𝐾‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 88 | 82, 57, 87 | sylc 62 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
∧ 𝑚 ≤
(♯‘𝐴)) →
⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 89 | 88, 64, 69 | ifcldadc 3591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ if(𝑚 ≤
(♯‘𝐴),
⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 1) ∈ ℂ) |
| 90 | 73, 76, 29, 89 | fvmptd3 5658 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐻‘𝑚) = if(𝑚 ≤ (♯‘𝐴), ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 1)) |
| 91 | 90, 89 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐻‘𝑚) ∈
ℂ) |
| 92 | 19 | f1oeq2d 5503 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) |
| 93 | 14, 92 | mpbird 167 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾:(1...𝑀)–1-1-onto→𝐴) |
| 94 | | f1of 5507 |
. . . . . . . . 9
⊢ (𝐾:(1...𝑀)–1-1-onto→𝐴 → 𝐾:(1...𝑀)⟶𝐴) |
| 95 | 93, 94 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾:(1...𝑀)⟶𝐴) |
| 96 | | fvco3 5635 |
. . . . . . . 8
⊢ ((𝐾:(1...𝑀)⟶𝐴 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) |
| 97 | 95, 96 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) |
| 98 | 97 | fveq2d 5565 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) = (𝑓‘(◡𝑓‘(𝐾‘𝑖)))) |
| 99 | 11 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto→𝐴) |
| 100 | 95 | ffvelcdmda 5700 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) ∈ 𝐴) |
| 101 | | f1ocnvfv2 5828 |
. . . . . . 7
⊢ ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (𝐾‘𝑖) ∈ 𝐴) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) |
| 102 | 99, 100, 101 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) |
| 103 | 98, 102 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) = (𝐾‘𝑖)) |
| 104 | 103 | csbeq1d 3091 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 105 | | breq1 4037 |
. . . . . . 7
⊢ (𝑗 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑗 ≤ (♯‘𝐴) ↔ ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ (♯‘𝐴))) |
| 106 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑗 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑓‘𝑗) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
| 107 | 106 | csbeq1d 3091 |
. . . . . . 7
⊢ (𝑗 = ((◡𝑓 ∘ 𝐾)‘𝑖) → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 108 | 105, 107 | ifbieq1d 3584 |
. . . . . 6
⊢ (𝑗 = ((◡𝑓 ∘ 𝐾)‘𝑖) → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ (♯‘𝐴), ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 1)) |
| 109 | | f1of 5507 |
. . . . . . . . 9
⊢ ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) |
| 110 | 21, 109 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) |
| 111 | 110 | ffvelcdmda 5700 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀)) |
| 112 | | elfznn 10146 |
. . . . . . 7
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) |
| 113 | 111, 112 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) |
| 114 | | elfzle2 10120 |
. . . . . . . . . 10
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) |
| 115 | 111, 114 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) |
| 116 | 48 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑀 = (♯‘𝐴)) |
| 117 | 115, 116 | breqtrd 4060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ (♯‘𝐴)) |
| 118 | 117 | iftrued 3569 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ (♯‘𝐴), ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 1) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 119 | 56 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 120 | | nfcsb1v 3117 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 |
| 121 | 120 | nfel1 2350 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ |
| 122 | | csbeq1a 3093 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐾‘𝑖) → 𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 123 | 122 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐾‘𝑖) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) |
| 124 | 121, 123 | rspc 2862 |
. . . . . . . . 9
⊢ ((𝐾‘𝑖) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) |
| 125 | 100, 119,
124 | sylc 62 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ) |
| 126 | 104, 125 | eqeltrd 2273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵 ∈ ℂ) |
| 127 | 118, 126 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ (♯‘𝐴), ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 1) ∈ ℂ) |
| 128 | 22, 108, 113, 127 | fvmptd3 5658 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ (♯‘𝐴), ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 1)) |
| 129 | 128, 118 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 130 | | breq1 4037 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴))) |
| 131 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (𝐾‘𝑗) = (𝐾‘𝑖)) |
| 132 | 131 | csbeq1d 3091 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → ⦋(𝐾‘𝑗) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 133 | 130, 132 | ifbieq1d 3584 |
. . . . . 6
⊢ (𝑗 = 𝑖 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑖 ≤ (♯‘𝐴), ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 1)) |
| 134 | | elfznn 10146 |
. . . . . . 7
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ) |
| 135 | 134 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ) |
| 136 | | elfzle2 10120 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ≤ 𝑀) |
| 137 | 136 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑀) |
| 138 | 137, 116 | breqtrd 4060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ (♯‘𝐴)) |
| 139 | 138 | iftrued 3569 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ (♯‘𝐴), ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 1) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 140 | 139, 125 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ (♯‘𝐴), ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 1) ∈ ℂ) |
| 141 | 73, 133, 135, 140 | fvmptd3 5658 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = if(𝑖 ≤ (♯‘𝐴), ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 1)) |
| 142 | 141, 139 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 143 | 104, 129,
142 | 3eqtr4rd 2240 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
| 144 | 2, 4, 6, 10, 21, 72, 91, 143 | seq3f1o 10626 |
. 2
⊢ (𝜑 → (seq1( · , 𝐻)‘𝑀) = (seq1( · , 𝐺)‘𝑀)) |
| 145 | 18 | fveq2d 5565 |
. 2
⊢ (𝜑 → (seq1( · , 𝐻)‘𝑀) = (seq1( · , 𝐻)‘𝑁)) |
| 146 | 144, 145 | eqtr3d 2231 |
1
⊢ (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁)) |