ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem3 GIF version

Theorem prodmodclem3 11718
Description: Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmodc.3 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
prodmodclem3.4 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))
prodmolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
prodmolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
prodmolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
Assertion
Ref Expression
prodmodclem3 (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗   𝑗,𝐺   𝑗,𝐾,𝑘   𝑗,𝑀   𝑓,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑗)   𝐴(𝑓)   𝐵(𝑓,𝑘)   𝐹(𝑓,𝑗,𝑘)   𝐺(𝑓,𝑘)   𝐻(𝑓,𝑗,𝑘)   𝐾(𝑓)   𝑀(𝑓,𝑘)   𝑁(𝑓,𝑗,𝑘)

Proof of Theorem prodmodclem3
Dummy variables 𝑖 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 7999 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑚 · 𝑦) ∈ ℂ)
21adantl 277 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑚 · 𝑦) ∈ ℂ)
3 mulcom 8001 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑚 · 𝑦) = (𝑦 · 𝑚))
43adantl 277 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑚 · 𝑦) = (𝑦 · 𝑚))
5 mulass 8003 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑥) = (𝑚 · (𝑦 · 𝑥)))
65adantl 277 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑚 · 𝑦) · 𝑥) = (𝑚 · (𝑦 · 𝑥)))
7 prodmolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 112 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 9628 . . . 4 ℕ = (ℤ‘1)
108, 9eleqtrdi 2286 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 prodmolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
12 f1ocnv 5513 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1311, 12syl 14 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
14 prodmolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
15 f1oco 5523 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1613, 14, 15syl2anc 411 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
177ancomd 267 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ))
1817, 14, 11nnf1o 11519 . . . . . 6 (𝜑𝑀 = 𝑁)
1918oveq2d 5934 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
2019f1oeq2d 5496 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
2116, 20mpbird 167 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
22 prodmodc.3 . . . . 5 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
23 breq1 4032 . . . . . 6 (𝑗 = 𝑚 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑚 ≤ (♯‘𝐴)))
24 fveq2 5554 . . . . . . 7 (𝑗 = 𝑚 → (𝑓𝑗) = (𝑓𝑚))
2524csbeq1d 3087 . . . . . 6 (𝑗 = 𝑚(𝑓𝑗) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
2623, 25ifbieq1d 3579 . . . . 5 (𝑗 = 𝑚 → if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1) = if(𝑚 ≤ (♯‘𝐴), (𝑓𝑚) / 𝑘𝐵, 1))
27 elnnuz 9629 . . . . . . 7 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
2827biimpri 133 . . . . . 6 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℕ)
2928adantl 277 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℕ)
30 f1of 5500 . . . . . . . . . 10 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
3111, 30syl 14 . . . . . . . . 9 (𝜑𝑓:(1...𝑀)⟶𝐴)
3231ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑓:(1...𝑀)⟶𝐴)
33 1zzd 9344 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
348nnzd 9438 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑀 ∈ ℤ)
36 eluzelz 9601 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℤ)
3736ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ∈ ℤ)
3833, 35, 373jca 1179 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ))
39 eluzle 9604 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘1) → 1 ≤ 𝑚)
4039ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 1 ≤ 𝑚)
41 simpr 110 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ≤ (♯‘𝐴))
428nnnn0d 9293 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
43 hashfz1 10854 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
4442, 43syl 14 . . . . . . . . . . . . 13 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
45 1zzd 9344 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
4645, 34fzfigd 10502 . . . . . . . . . . . . . 14 (𝜑 → (1...𝑀) ∈ Fin)
4746, 11fihasheqf1od 10860 . . . . . . . . . . . . 13 (𝜑 → (♯‘(1...𝑀)) = (♯‘𝐴))
4844, 47eqtr3d 2228 . . . . . . . . . . . 12 (𝜑𝑀 = (♯‘𝐴))
4948ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑀 = (♯‘𝐴))
5041, 49breqtrrd 4057 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚𝑀)
5140, 50jca 306 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (1 ≤ 𝑚𝑚𝑀))
52 elfz2 10081 . . . . . . . . 9 (𝑚 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (1 ≤ 𝑚𝑚𝑀)))
5338, 51, 52sylanbrc 417 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ∈ (1...𝑀))
5432, 53ffvelcdmd 5694 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (𝑓𝑚) ∈ 𝐴)
55 prodmo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5655ralrimiva 2567 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5756ad2antrr 488 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
58 nfcsb1v 3113 . . . . . . . . 9 𝑘(𝑓𝑚) / 𝑘𝐵
5958nfel1 2347 . . . . . . . 8 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
60 csbeq1a 3089 . . . . . . . . 9 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
6160eleq1d 2262 . . . . . . . 8 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
6259, 61rspc 2858 . . . . . . 7 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
6354, 57, 62sylc 62 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
64 1cnd 8035 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ ¬ 𝑚 ≤ (♯‘𝐴)) → 1 ∈ ℂ)
6529nnzd 9438 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℤ)
6648, 34eqeltrrd 2271 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℤ)
6766adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
68 zdcle 9393 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑚 ≤ (♯‘𝐴))
6965, 67, 68syl2anc 411 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → DECID 𝑚 ≤ (♯‘𝐴))
7063, 64, 69ifcldadc 3586 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘1)) → if(𝑚 ≤ (♯‘𝐴), (𝑓𝑚) / 𝑘𝐵, 1) ∈ ℂ)
7122, 26, 29, 70fvmptd3 5651 . . . 4 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐺𝑚) = if(𝑚 ≤ (♯‘𝐴), (𝑓𝑚) / 𝑘𝐵, 1))
7271, 70eqeltrd 2270 . . 3 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐺𝑚) ∈ ℂ)
73 prodmodclem3.4 . . . . 5 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))
74 fveq2 5554 . . . . . . 7 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
7574csbeq1d 3087 . . . . . 6 (𝑗 = 𝑚(𝐾𝑗) / 𝑘𝐵 = (𝐾𝑚) / 𝑘𝐵)
7623, 75ifbieq1d 3579 . . . . 5 (𝑗 = 𝑚 → if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1) = if(𝑚 ≤ (♯‘𝐴), (𝐾𝑚) / 𝑘𝐵, 1))
7714ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝐾:(1...𝑁)–1-1-onto𝐴)
78 f1of 5500 . . . . . . . . 9 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
7977, 78syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝐾:(1...𝑁)⟶𝐴)
8019ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (1...𝑀) = (1...𝑁))
8153, 80eleqtrd 2272 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ∈ (1...𝑁))
8279, 81ffvelcdmd 5694 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (𝐾𝑚) ∈ 𝐴)
83 nfcsb1v 3113 . . . . . . . . 9 𝑘(𝐾𝑚) / 𝑘𝐵
8483nfel1 2347 . . . . . . . 8 𝑘(𝐾𝑚) / 𝑘𝐵 ∈ ℂ
85 csbeq1a 3089 . . . . . . . . 9 (𝑘 = (𝐾𝑚) → 𝐵 = (𝐾𝑚) / 𝑘𝐵)
8685eleq1d 2262 . . . . . . . 8 (𝑘 = (𝐾𝑚) → (𝐵 ∈ ℂ ↔ (𝐾𝑚) / 𝑘𝐵 ∈ ℂ))
8784, 86rspc 2858 . . . . . . 7 ((𝐾𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ))
8882, 57, 87sylc 62 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ)
8988, 64, 69ifcldadc 3586 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘1)) → if(𝑚 ≤ (♯‘𝐴), (𝐾𝑚) / 𝑘𝐵, 1) ∈ ℂ)
9073, 76, 29, 89fvmptd3 5651 . . . 4 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) = if(𝑚 ≤ (♯‘𝐴), (𝐾𝑚) / 𝑘𝐵, 1))
9190, 89eqeltrd 2270 . . 3 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) ∈ ℂ)
9219f1oeq2d 5496 . . . . . . . . . 10 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
9314, 92mpbird 167 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
94 f1of 5500 . . . . . . . . 9 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
9593, 94syl 14 . . . . . . . 8 (𝜑𝐾:(1...𝑀)⟶𝐴)
96 fvco3 5628 . . . . . . . 8 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
9795, 96sylan 283 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
9897fveq2d 5558 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
9911adantr 276 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
10095ffvelcdmda 5693 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
101 f1ocnvfv2 5821 . . . . . . 7 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
10299, 100, 101syl2anc 411 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
10398, 102eqtrd 2226 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝐾𝑖))
104103csbeq1d 3087 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
105 breq1 4032 . . . . . . 7 (𝑗 = ((𝑓𝐾)‘𝑖) → (𝑗 ≤ (♯‘𝐴) ↔ ((𝑓𝐾)‘𝑖) ≤ (♯‘𝐴)))
106 fveq2 5554 . . . . . . . 8 (𝑗 = ((𝑓𝐾)‘𝑖) → (𝑓𝑗) = (𝑓‘((𝑓𝐾)‘𝑖)))
107106csbeq1d 3087 . . . . . . 7 (𝑗 = ((𝑓𝐾)‘𝑖) → (𝑓𝑗) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
108105, 107ifbieq1d 3579 . . . . . 6 (𝑗 = ((𝑓𝐾)‘𝑖) → if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1) = if(((𝑓𝐾)‘𝑖) ≤ (♯‘𝐴), (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 1))
109 f1of 5500 . . . . . . . . 9 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
11021, 109syl 14 . . . . . . . 8 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
111110ffvelcdmda 5693 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
112 elfznn 10120 . . . . . . 7 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
113111, 112syl 14 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
114 elfzle2 10094 . . . . . . . . . 10 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ≤ 𝑀)
115111, 114syl 14 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ≤ 𝑀)
11648adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑀 = (♯‘𝐴))
117115, 116breqtrd 4055 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ≤ (♯‘𝐴))
118117iftrued 3564 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → if(((𝑓𝐾)‘𝑖) ≤ (♯‘𝐴), (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 1) = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
11956adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
120 nfcsb1v 3113 . . . . . . . . . . 11 𝑘(𝐾𝑖) / 𝑘𝐵
121120nfel1 2347 . . . . . . . . . 10 𝑘(𝐾𝑖) / 𝑘𝐵 ∈ ℂ
122 csbeq1a 3089 . . . . . . . . . . 11 (𝑘 = (𝐾𝑖) → 𝐵 = (𝐾𝑖) / 𝑘𝐵)
123122eleq1d 2262 . . . . . . . . . 10 (𝑘 = (𝐾𝑖) → (𝐵 ∈ ℂ ↔ (𝐾𝑖) / 𝑘𝐵 ∈ ℂ))
124121, 123rspc 2858 . . . . . . . . 9 ((𝐾𝑖) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐾𝑖) / 𝑘𝐵 ∈ ℂ))
125100, 119, 124sylc 62 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 ∈ ℂ)
126104, 125eqeltrd 2270 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵 ∈ ℂ)
127118, 126eqeltrd 2270 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → if(((𝑓𝐾)‘𝑖) ≤ (♯‘𝐴), (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 1) ∈ ℂ)
12822, 108, 113, 127fvmptd3 5651 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = if(((𝑓𝐾)‘𝑖) ≤ (♯‘𝐴), (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 1))
129128, 118eqtrd 2226 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
130 breq1 4032 . . . . . . 7 (𝑗 = 𝑖 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴)))
131 fveq2 5554 . . . . . . . 8 (𝑗 = 𝑖 → (𝐾𝑗) = (𝐾𝑖))
132131csbeq1d 3087 . . . . . . 7 (𝑗 = 𝑖(𝐾𝑗) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
133130, 132ifbieq1d 3579 . . . . . 6 (𝑗 = 𝑖 → if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1) = if(𝑖 ≤ (♯‘𝐴), (𝐾𝑖) / 𝑘𝐵, 1))
134 elfznn 10120 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
135134adantl 277 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ)
136 elfzle2 10094 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
137136adantl 277 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖𝑀)
138137, 116breqtrd 4055 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ≤ (♯‘𝐴))
139138iftrued 3564 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ (♯‘𝐴), (𝐾𝑖) / 𝑘𝐵, 1) = (𝐾𝑖) / 𝑘𝐵)
140139, 125eqeltrd 2270 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ (♯‘𝐴), (𝐾𝑖) / 𝑘𝐵, 1) ∈ ℂ)
14173, 133, 135, 140fvmptd3 5651 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = if(𝑖 ≤ (♯‘𝐴), (𝐾𝑖) / 𝑘𝐵, 1))
142141, 139eqtrd 2226 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐾𝑖) / 𝑘𝐵)
143104, 129, 1423eqtr4rd 2237 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
1442, 4, 6, 10, 21, 72, 91, 143seq3f1o 10588 . 2 (𝜑 → (seq1( · , 𝐻)‘𝑀) = (seq1( · , 𝐺)‘𝑀))
14518fveq2d 5558 . 2 (𝜑 → (seq1( · , 𝐻)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
146144, 145eqtr3d 2228 1 (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wral 2472  csb 3080  ifcif 3557   class class class wbr 4029  cmpt 4090  ccnv 4658  ccom 4663  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873   · cmul 7877  cle 8055  cn 8982  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-ihash 10847
This theorem is referenced by:  prodmodclem2a  11719  prodmodc  11721
  Copyright terms: Public domain W3C validator