ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2d GIF version

Theorem fneq2d 5412
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fneq2d (𝜑 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem fneq2d
StepHypRef Expression
1 fneq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 fneq2 5410 . 2 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
31, 2syl 14 1 (𝜑 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395   Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-fn 5321
This theorem is referenced by:  fneq12d  5413  fncofn  5821  acfun  7397  ccfunen  7458  ccatlid  11149  ccatrid  11150  ccatass  11151  ccatswrd  11210  swrdccat2  11211  ccatpfx  11241  swrdswrd  11245  swrdccatin2  11269  pfxccatin12  11273  seq3shft  11357  ptex  13305  srg1zr  13958
  Copyright terms: Public domain W3C validator