ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2d Unicode version

Theorem fneq2d 5309
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fneq2d  |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )

Proof of Theorem fneq2d
StepHypRef Expression
1 fneq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 fneq2 5307 . 2  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-fn 5221
This theorem is referenced by:  fneq12d  5310  acfun  7208  ccfunen  7265  seq3shft  10849  ptex  12718  srg1zr  13175
  Copyright terms: Public domain W3C validator