| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2d | Unicode version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 |
|
| Ref | Expression |
|---|---|
| fneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 |
. 2
| |
| 2 | fneq2 5409 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5320 |
| This theorem is referenced by: fneq12d 5412 acfun 7385 ccfunen 7446 ccatlid 11136 ccatrid 11137 ccatass 11138 ccatswrd 11197 swrdccat2 11198 ccatpfx 11228 swrdswrd 11232 swrdccatin2 11256 pfxccatin12 11260 seq3shft 11344 ptex 13292 srg1zr 13945 |
| Copyright terms: Public domain | W3C validator |