ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2d Unicode version

Theorem fneq2d 5384
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fneq2d  |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )

Proof of Theorem fneq2d
StepHypRef Expression
1 fneq2d.1 . 2  |-  ( ph  ->  A  =  B )
2 fneq2 5382 . 2  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-fn 5293
This theorem is referenced by:  fneq12d  5385  acfun  7350  ccfunen  7411  ccatlid  11100  ccatrid  11101  ccatass  11102  ccatswrd  11161  swrdccat2  11162  ccatpfx  11192  swrdswrd  11196  swrdccatin2  11220  pfxccatin12  11224  seq3shft  11264  ptex  13211  srg1zr  13864
  Copyright terms: Public domain W3C validator