| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2d | Unicode version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 |
|
| Ref | Expression |
|---|---|
| fneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 |
. 2
| |
| 2 | fneq2 5382 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-fn 5293 |
| This theorem is referenced by: fneq12d 5385 acfun 7350 ccfunen 7411 ccatlid 11100 ccatrid 11101 ccatass 11102 ccatswrd 11161 swrdccat2 11162 ccatpfx 11192 swrdswrd 11196 swrdccatin2 11220 pfxccatin12 11224 seq3shft 11264 ptex 13211 srg1zr 13864 |
| Copyright terms: Public domain | W3C validator |