ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12d GIF version

Theorem fneq12d 5351
Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1 (𝜑𝐹 = 𝐺)
fneq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fneq12d (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21fneq1d 5349 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
3 fneq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43fneq2d 5350 . 2 (𝜑 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
52, 4bitrd 188 1 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-fun 5261  df-fn 5262
This theorem is referenced by:  fneq12  5352  tfrlemi1  6399
  Copyright terms: Public domain W3C validator