ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft GIF version

Theorem seq3shft 11357
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex (𝜑𝐹𝑉)
seq3shft.m (𝜑𝑀 ∈ ℤ)
seq3shft.n (𝜑𝑁 ∈ ℤ)
seq3shft.fn ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
seq3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3shft (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seq3shft
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seq3shft.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seq3shft.ex . . . . . . 7 (𝜑𝐹𝑉)
43adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
5 seq3shft.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 9578 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
76adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
8 eluzelz 9739 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
98adantl 277 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
109zcnd 9578 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℂ)
11 shftvalg 11355 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
124, 7, 10, 11syl3anc 1271 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
13 fveq2 5629 . . . . . . 7 (𝑎 = (𝑥𝑁) → (𝐹𝑎) = (𝐹‘(𝑥𝑁)))
1413eleq1d 2298 . . . . . 6 (𝑎 = (𝑥𝑁) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹‘(𝑥𝑁)) ∈ 𝑆))
15 seq3shft.fn . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
1615ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆)
17 fveq2 5629 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1817eleq1d 2298 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑎) ∈ 𝑆))
1918cbvralv 2765 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2016, 19sylib 122 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2120adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
222, 5zsubcld 9582 . . . . . . . 8 (𝜑 → (𝑀𝑁) ∈ ℤ)
2322adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ∈ ℤ)
245adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
259, 24zsubcld 9582 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ ℤ)
262zred 9577 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2726adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
289zred 9577 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
2924zred 9577 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℝ)
30 eluzle 9742 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
3130adantl 277 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
3227, 28, 29, 31lesub1dd 8716 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ≤ (𝑥𝑁))
33 eluz2 9736 . . . . . . 7 ((𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)) ↔ ((𝑀𝑁) ∈ ℤ ∧ (𝑥𝑁) ∈ ℤ ∧ (𝑀𝑁) ≤ (𝑥𝑁)))
3423, 25, 32, 33syl3anbrc 1205 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)))
3514, 21, 34rspcdva 2912 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹‘(𝑥𝑁)) ∈ 𝑆)
3612, 35eqeltrd 2306 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
37 seq3shft.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
381, 2, 36, 37seqf 10694 . . 3 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)):(ℤ𝑀)⟶𝑆)
3938ffnd 5474 . 2 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
40 eqid 2229 . . . . . 6 (ℤ‘(𝑀𝑁)) = (ℤ‘(𝑀𝑁))
4140, 22, 15, 37seqf 10694 . . . . 5 (𝜑 → seq(𝑀𝑁)( + , 𝐹):(ℤ‘(𝑀𝑁))⟶𝑆)
4241ffnd 5474 . . . 4 (𝜑 → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
43 seqex 10679 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
4443shftfn 11343 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
4542, 6, 44syl2anc 411 . . 3 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
46 shftuz 11336 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
475, 22, 46syl2anc 411 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
482zcnd 9578 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
4948, 6npcand 8469 . . . . . 6 (𝜑 → ((𝑀𝑁) + 𝑁) = 𝑀)
5049fveq2d 5633 . . . . 5 (𝜑 → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
5147, 50eqtrd 2262 . . . 4 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
5251fneq2d 5412 . . 3 (𝜑 → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
5345, 52mpbid 147 . 2 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
5448, 6negsubd 8471 . . . . . 6 (𝜑 → (𝑀 + -𝑁) = (𝑀𝑁))
5554adantr 276 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
5655seqeq1d 10683 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
57 eluzelcn 9741 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
5857adantl 277 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ ℂ)
596adantr 276 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
6058, 59negsubd 8471 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
6156, 60fveq12d 5636 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
62 simpr 110 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
635adantr 276 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
6463znegcld 9579 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
653ad2antrr 488 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝐹𝑉)
6659adantr 276 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑁 ∈ ℂ)
67 elfzelz 10229 . . . . . . . 8 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
6867adantl 277 . . . . . . 7 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℤ)
6968zcnd 9578 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℂ)
70 shftvalg 11355 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7165, 66, 69, 70syl3anc 1271 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7269, 66negsubd 8471 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝑦 + -𝑁) = (𝑦𝑁))
7372fveq2d 5633 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
7471, 73eqtr4d 2265 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
7536adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
76 simpll 527 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝜑)
77 simpr 110 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀 + -𝑁)))
7854fveq2d 5633 . . . . . . . 8 (𝜑 → (ℤ‘(𝑀 + -𝑁)) = (ℤ‘(𝑀𝑁)))
7978eleq2d 2299 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8079ad2antrr 488 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8177, 80mpbid 147 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀𝑁)))
8276, 81, 15syl2anc 411 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝐹𝑥) ∈ 𝑆)
8337adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8462, 64, 74, 75, 82, 83seq3shft2 10711 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
85 shftvalg 11355 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8643, 59, 58, 85mp3an2i 1376 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8761, 84, 863eqtr4d 2272 . 2 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
8839, 53, 87eqfnfvd 5737 1 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799   class class class wbr 4083   Fn wfn 5313  cfv 5318  (class class class)co 6007  cc 8005  cr 8006   + caddc 8010  cle 8190  cmin 8325  -cneg 8326  cz 9454  cuz 9730  ...cfz 10212  seqcseq 10677   shift cshi 11333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-seqfrec 10678  df-shft 11334
This theorem is referenced by:  iser3shft  11865  eftlub  12209
  Copyright terms: Public domain W3C validator