ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft GIF version

Theorem seq3shft 10578
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex (𝜑𝐹𝑉)
seq3shft.m (𝜑𝑀 ∈ ℤ)
seq3shft.n (𝜑𝑁 ∈ ℤ)
seq3shft.fn ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
seq3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3shft (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seq3shft
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2117 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seq3shft.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seq3shft.ex . . . . . . 7 (𝜑𝐹𝑉)
43adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
5 seq3shft.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 9142 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
76adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
8 eluzelz 9303 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
98adantl 275 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
109zcnd 9142 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℂ)
11 shftvalg 10576 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
124, 7, 10, 11syl3anc 1201 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
13 fveq2 5389 . . . . . . 7 (𝑎 = (𝑥𝑁) → (𝐹𝑎) = (𝐹‘(𝑥𝑁)))
1413eleq1d 2186 . . . . . 6 (𝑎 = (𝑥𝑁) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹‘(𝑥𝑁)) ∈ 𝑆))
15 seq3shft.fn . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
1615ralrimiva 2482 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆)
17 fveq2 5389 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1817eleq1d 2186 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑎) ∈ 𝑆))
1918cbvralv 2631 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2016, 19sylib 121 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2120adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
222, 5zsubcld 9146 . . . . . . . 8 (𝜑 → (𝑀𝑁) ∈ ℤ)
2322adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ∈ ℤ)
245adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
259, 24zsubcld 9146 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ ℤ)
262zred 9141 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2726adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
289zred 9141 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
2924zred 9141 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℝ)
30 eluzle 9306 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
3130adantl 275 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
3227, 28, 29, 31lesub1dd 8291 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ≤ (𝑥𝑁))
33 eluz2 9300 . . . . . . 7 ((𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)) ↔ ((𝑀𝑁) ∈ ℤ ∧ (𝑥𝑁) ∈ ℤ ∧ (𝑀𝑁) ≤ (𝑥𝑁)))
3423, 25, 32, 33syl3anbrc 1150 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)))
3514, 21, 34rspcdva 2768 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹‘(𝑥𝑁)) ∈ 𝑆)
3612, 35eqeltrd 2194 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
37 seq3shft.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
381, 2, 36, 37seqf 10202 . . 3 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)):(ℤ𝑀)⟶𝑆)
3938ffnd 5243 . 2 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
40 eqid 2117 . . . . . 6 (ℤ‘(𝑀𝑁)) = (ℤ‘(𝑀𝑁))
4140, 22, 15, 37seqf 10202 . . . . 5 (𝜑 → seq(𝑀𝑁)( + , 𝐹):(ℤ‘(𝑀𝑁))⟶𝑆)
4241ffnd 5243 . . . 4 (𝜑 → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
43 seqex 10188 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
4443shftfn 10564 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
4542, 6, 44syl2anc 408 . . 3 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
46 shftuz 10557 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
475, 22, 46syl2anc 408 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
482zcnd 9142 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
4948, 6npcand 8045 . . . . . 6 (𝜑 → ((𝑀𝑁) + 𝑁) = 𝑀)
5049fveq2d 5393 . . . . 5 (𝜑 → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
5147, 50eqtrd 2150 . . . 4 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
5251fneq2d 5184 . . 3 (𝜑 → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
5345, 52mpbid 146 . 2 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
5448, 6negsubd 8047 . . . . . 6 (𝜑 → (𝑀 + -𝑁) = (𝑀𝑁))
5554adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
5655seqeq1d 10192 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
57 eluzelcn 9305 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
5857adantl 275 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ ℂ)
596adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
6058, 59negsubd 8047 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
6156, 60fveq12d 5396 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
62 simpr 109 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
635adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
6463znegcld 9143 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
653ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝐹𝑉)
6659adantr 274 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑁 ∈ ℂ)
67 elfzelz 9774 . . . . . . . 8 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
6867adantl 275 . . . . . . 7 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℤ)
6968zcnd 9142 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℂ)
70 shftvalg 10576 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7165, 66, 69, 70syl3anc 1201 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7269, 66negsubd 8047 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝑦 + -𝑁) = (𝑦𝑁))
7372fveq2d 5393 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
7471, 73eqtr4d 2153 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
7536adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
76 simpll 503 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝜑)
77 simpr 109 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀 + -𝑁)))
7854fveq2d 5393 . . . . . . . 8 (𝜑 → (ℤ‘(𝑀 + -𝑁)) = (ℤ‘(𝑀𝑁)))
7978eleq2d 2187 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8079ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8177, 80mpbid 146 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀𝑁)))
8276, 81, 15syl2anc 408 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝐹𝑥) ∈ 𝑆)
8337adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8462, 64, 74, 75, 82, 83seq3shft2 10214 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
85 shftvalg 10576 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8643, 59, 58, 85mp3an2i 1305 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8761, 84, 863eqtr4d 2160 . 2 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
8839, 53, 87eqfnfvd 5489 1 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  {crab 2397  Vcvv 2660   class class class wbr 3899   Fn wfn 5088  cfv 5093  (class class class)co 5742  cc 7586  cr 7587   + caddc 7591  cle 7769  cmin 7901  -cneg 7902  cz 9022  cuz 9294  ...cfz 9758  seqcseq 10186   shift cshi 10554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-seqfrec 10187  df-shft 10555
This theorem is referenced by:  iser3shft  11083  eftlub  11323
  Copyright terms: Public domain W3C validator