ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft GIF version

Theorem seq3shft 10326
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex (𝜑𝐹𝑉)
seq3shft.m (𝜑𝑀 ∈ ℤ)
seq3shft.n (𝜑𝑁 ∈ ℤ)
seq3shft.fn ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
seq3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3shft (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seq3shft
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2089 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seq3shft.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seq3shft.ex . . . . . . 7 (𝜑𝐹𝑉)
43adantr 271 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
5 seq3shft.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 8923 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
76adantr 271 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
8 eluzelz 9082 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
98adantl 272 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
109zcnd 8923 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℂ)
11 shftvalg 10324 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
124, 7, 10, 11syl3anc 1175 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
13 fveq2 5318 . . . . . . 7 (𝑎 = (𝑥𝑁) → (𝐹𝑎) = (𝐹‘(𝑥𝑁)))
1413eleq1d 2157 . . . . . 6 (𝑎 = (𝑥𝑁) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹‘(𝑥𝑁)) ∈ 𝑆))
15 seq3shft.fn . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
1615ralrimiva 2447 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆)
17 fveq2 5318 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1817eleq1d 2157 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑎) ∈ 𝑆))
1918cbvralv 2591 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2016, 19sylib 121 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2120adantr 271 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
222, 5zsubcld 8927 . . . . . . . 8 (𝜑 → (𝑀𝑁) ∈ ℤ)
2322adantr 271 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ∈ ℤ)
245adantr 271 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
259, 24zsubcld 8927 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ ℤ)
262zred 8922 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2726adantr 271 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
289zred 8922 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
2924zred 8922 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℝ)
30 eluzle 9085 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
3130adantl 272 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
3227, 28, 29, 31lesub1dd 8092 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ≤ (𝑥𝑁))
33 eluz2 9079 . . . . . . 7 ((𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)) ↔ ((𝑀𝑁) ∈ ℤ ∧ (𝑥𝑁) ∈ ℤ ∧ (𝑀𝑁) ≤ (𝑥𝑁)))
3423, 25, 32, 33syl3anbrc 1128 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)))
3514, 21, 34rspcdva 2728 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹‘(𝑥𝑁)) ∈ 𝑆)
3612, 35eqeltrd 2165 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
37 seq3shft.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
381, 2, 36, 37seqf 9934 . . 3 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)):(ℤ𝑀)⟶𝑆)
3938ffnd 5175 . 2 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
40 eqid 2089 . . . . . 6 (ℤ‘(𝑀𝑁)) = (ℤ‘(𝑀𝑁))
4140, 22, 15, 37seqf 9934 . . . . 5 (𝜑 → seq(𝑀𝑁)( + , 𝐹):(ℤ‘(𝑀𝑁))⟶𝑆)
4241ffnd 5175 . . . 4 (𝜑 → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
43 seqex 9911 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
4443shftfn 10312 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
4542, 6, 44syl2anc 404 . . 3 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
46 shftuz 10305 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
475, 22, 46syl2anc 404 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
482zcnd 8923 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
4948, 6npcand 7851 . . . . . 6 (𝜑 → ((𝑀𝑁) + 𝑁) = 𝑀)
5049fveq2d 5322 . . . . 5 (𝜑 → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
5147, 50eqtrd 2121 . . . 4 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
5251fneq2d 5118 . . 3 (𝜑 → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
5345, 52mpbid 146 . 2 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
5448, 6negsubd 7853 . . . . . 6 (𝜑 → (𝑀 + -𝑁) = (𝑀𝑁))
5554adantr 271 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
5655seqeq1d 9918 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
57 eluzelcn 9084 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
5857adantl 272 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ ℂ)
596adantr 271 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
6058, 59negsubd 7853 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
6156, 60fveq12d 5325 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
62 simpr 109 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
635adantr 271 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
6463znegcld 8924 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
653ad2antrr 473 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝐹𝑉)
6659adantr 271 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑁 ∈ ℂ)
67 elfzelz 9494 . . . . . . . 8 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
6867adantl 272 . . . . . . 7 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℤ)
6968zcnd 8923 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℂ)
70 shftvalg 10324 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7165, 66, 69, 70syl3anc 1175 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7269, 66negsubd 7853 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝑦 + -𝑁) = (𝑦𝑁))
7372fveq2d 5322 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
7471, 73eqtr4d 2124 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
7536adantlr 462 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
76 simpll 497 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝜑)
77 simpr 109 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀 + -𝑁)))
7854fveq2d 5322 . . . . . . . 8 (𝜑 → (ℤ‘(𝑀 + -𝑁)) = (ℤ‘(𝑀𝑁)))
7978eleq2d 2158 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8079ad2antrr 473 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8177, 80mpbid 146 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀𝑁)))
8276, 81, 15syl2anc 404 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝐹𝑥) ∈ 𝑆)
8337adantlr 462 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8462, 64, 74, 75, 82, 83seq3shft2 9953 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
85 shftvalg 10324 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8643, 59, 58, 85mp3an2i 1279 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8761, 84, 863eqtr4d 2131 . 2 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
8839, 53, 87eqfnfvd 5414 1 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  wral 2360  {crab 2364  Vcvv 2620   class class class wbr 3851   Fn wfn 5023  cfv 5028  (class class class)co 5666  cc 7402  cr 7403   + caddc 7407  cle 7577  cmin 7707  -cneg 7708  cz 8804  cuz 9073  ...cfz 9478  seqcseq 9906   shift cshi 10302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805  df-uz 9074  df-fz 9479  df-iseq 9907  df-seq3 9908  df-shft 10303
This theorem is referenced by:  iser3shft  10789  eftlub  11034
  Copyright terms: Public domain W3C validator