ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft GIF version

Theorem seq3shft 10603
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex (𝜑𝐹𝑉)
seq3shft.m (𝜑𝑀 ∈ ℤ)
seq3shft.n (𝜑𝑁 ∈ ℤ)
seq3shft.fn ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
seq3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3shft (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seq3shft
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2137 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seq3shft.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seq3shft.ex . . . . . . 7 (𝜑𝐹𝑉)
43adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
5 seq3shft.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 9167 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
76adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
8 eluzelz 9328 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
98adantl 275 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
109zcnd 9167 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℂ)
11 shftvalg 10601 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
124, 7, 10, 11syl3anc 1216 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
13 fveq2 5414 . . . . . . 7 (𝑎 = (𝑥𝑁) → (𝐹𝑎) = (𝐹‘(𝑥𝑁)))
1413eleq1d 2206 . . . . . 6 (𝑎 = (𝑥𝑁) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹‘(𝑥𝑁)) ∈ 𝑆))
15 seq3shft.fn . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
1615ralrimiva 2503 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆)
17 fveq2 5414 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1817eleq1d 2206 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑎) ∈ 𝑆))
1918cbvralv 2652 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2016, 19sylib 121 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2120adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
222, 5zsubcld 9171 . . . . . . . 8 (𝜑 → (𝑀𝑁) ∈ ℤ)
2322adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ∈ ℤ)
245adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
259, 24zsubcld 9171 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ ℤ)
262zred 9166 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2726adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
289zred 9166 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
2924zred 9166 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℝ)
30 eluzle 9331 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
3130adantl 275 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
3227, 28, 29, 31lesub1dd 8316 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ≤ (𝑥𝑁))
33 eluz2 9325 . . . . . . 7 ((𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)) ↔ ((𝑀𝑁) ∈ ℤ ∧ (𝑥𝑁) ∈ ℤ ∧ (𝑀𝑁) ≤ (𝑥𝑁)))
3423, 25, 32, 33syl3anbrc 1165 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)))
3514, 21, 34rspcdva 2789 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹‘(𝑥𝑁)) ∈ 𝑆)
3612, 35eqeltrd 2214 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
37 seq3shft.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
381, 2, 36, 37seqf 10227 . . 3 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)):(ℤ𝑀)⟶𝑆)
3938ffnd 5268 . 2 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
40 eqid 2137 . . . . . 6 (ℤ‘(𝑀𝑁)) = (ℤ‘(𝑀𝑁))
4140, 22, 15, 37seqf 10227 . . . . 5 (𝜑 → seq(𝑀𝑁)( + , 𝐹):(ℤ‘(𝑀𝑁))⟶𝑆)
4241ffnd 5268 . . . 4 (𝜑 → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
43 seqex 10213 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
4443shftfn 10589 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
4542, 6, 44syl2anc 408 . . 3 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
46 shftuz 10582 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
475, 22, 46syl2anc 408 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
482zcnd 9167 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
4948, 6npcand 8070 . . . . . 6 (𝜑 → ((𝑀𝑁) + 𝑁) = 𝑀)
5049fveq2d 5418 . . . . 5 (𝜑 → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
5147, 50eqtrd 2170 . . . 4 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
5251fneq2d 5209 . . 3 (𝜑 → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
5345, 52mpbid 146 . 2 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
5448, 6negsubd 8072 . . . . . 6 (𝜑 → (𝑀 + -𝑁) = (𝑀𝑁))
5554adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
5655seqeq1d 10217 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
57 eluzelcn 9330 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
5857adantl 275 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ ℂ)
596adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
6058, 59negsubd 8072 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
6156, 60fveq12d 5421 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
62 simpr 109 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
635adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
6463znegcld 9168 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
653ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝐹𝑉)
6659adantr 274 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑁 ∈ ℂ)
67 elfzelz 9799 . . . . . . . 8 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
6867adantl 275 . . . . . . 7 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℤ)
6968zcnd 9167 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℂ)
70 shftvalg 10601 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7165, 66, 69, 70syl3anc 1216 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7269, 66negsubd 8072 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝑦 + -𝑁) = (𝑦𝑁))
7372fveq2d 5418 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
7471, 73eqtr4d 2173 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
7536adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
76 simpll 518 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝜑)
77 simpr 109 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀 + -𝑁)))
7854fveq2d 5418 . . . . . . . 8 (𝜑 → (ℤ‘(𝑀 + -𝑁)) = (ℤ‘(𝑀𝑁)))
7978eleq2d 2207 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8079ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8177, 80mpbid 146 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀𝑁)))
8276, 81, 15syl2anc 408 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝐹𝑥) ∈ 𝑆)
8337adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8462, 64, 74, 75, 82, 83seq3shft2 10239 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
85 shftvalg 10601 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8643, 59, 58, 85mp3an2i 1320 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8761, 84, 863eqtr4d 2180 . 2 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
8839, 53, 87eqfnfvd 5514 1 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2414  {crab 2418  Vcvv 2681   class class class wbr 3924   Fn wfn 5113  cfv 5118  (class class class)co 5767  cc 7611  cr 7612   + caddc 7616  cle 7794  cmin 7926  -cneg 7927  cz 9047  cuz 9319  ...cfz 9783  seqcseq 10211   shift cshi 10579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-seqfrec 10212  df-shft 10580
This theorem is referenced by:  iser3shft  11108  eftlub  11385
  Copyright terms: Public domain W3C validator