| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 | ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2214 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 464 | . 2 ⊢ (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))) |
| 3 | df-fn 5271 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 4 | df-fn 5271 | . 2 ⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 dom cdm 4673 Fun wfun 5262 Fn wfn 5263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-fn 5271 |
| This theorem is referenced by: fneq2d 5359 fneq2i 5363 feq2 5403 foeq2 5489 f1o00 5551 eqfnfv2 5672 tfr0dm 6398 tfrlemisucaccv 6401 tfrlemi1 6408 tfrlemi14d 6409 tfrexlem 6410 tfr1onlemsucfn 6416 tfr1onlemsucaccv 6417 tfr1onlembxssdm 6419 tfr1onlembfn 6420 tfr1onlemaccex 6424 tfr1onlemres 6425 ixpeq1 6786 0fz1 10149 |
| Copyright terms: Public domain | W3C validator |