| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq2 | GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq2 | ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2216 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 464 | . 2 ⊢ (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))) |
| 3 | df-fn 5283 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 4 | df-fn 5283 | . 2 ⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 dom cdm 4683 Fun wfun 5274 Fn wfn 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-fn 5283 |
| This theorem is referenced by: fneq2d 5374 fneq2i 5378 feq2 5419 foeq2 5507 f1o00 5570 eqfnfv2 5691 tfr0dm 6421 tfrlemisucaccv 6424 tfrlemi1 6431 tfrlemi14d 6432 tfrexlem 6433 tfr1onlemsucfn 6439 tfr1onlemsucaccv 6440 tfr1onlembxssdm 6442 tfr1onlembfn 6443 tfr1onlemaccex 6447 tfr1onlemres 6448 ixpeq1 6809 0fz1 10187 |
| Copyright terms: Public domain | W3C validator |