| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fneq2 | GIF version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| fneq2 | ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq2 2206 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝐹 = 𝐴 ↔ dom 𝐹 = 𝐵)) | |
| 2 | 1 | anbi2d 464 | . 2 ⊢ (𝐴 = 𝐵 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))) | 
| 3 | df-fn 5261 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 4 | df-fn 5261 | . 2 ⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 dom cdm 4663 Fun wfun 5252 Fn wfn 5253 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 | 
| This theorem is referenced by: fneq2d 5349 fneq2i 5353 feq2 5391 foeq2 5477 f1o00 5539 eqfnfv2 5660 tfr0dm 6380 tfrlemisucaccv 6383 tfrlemi1 6390 tfrlemi14d 6391 tfrexlem 6392 tfr1onlemsucfn 6398 tfr1onlemsucaccv 6399 tfr1onlembxssdm 6401 tfr1onlembfn 6402 tfr1onlemaccex 6406 tfr1onlemres 6407 ixpeq1 6768 0fz1 10120 | 
| Copyright terms: Public domain | W3C validator |