ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1d GIF version

Theorem fneq1d 5149
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
fneq1d (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))

Proof of Theorem fneq1d
StepHypRef Expression
1 fneq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 fneq1 5147 . 2 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
31, 2syl 14 1 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1299   Fn wfn 5054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-fun 5061  df-fn 5062
This theorem is referenced by:  fneq12d  5151  f1o00  5336  f1ompt  5503  fmpt2d  5514  f1ocnvd  5904  offval2  5928  ofrfval2  5929  caofinvl  5935  f1od2  6062  neif  12092
  Copyright terms: Public domain W3C validator