ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1d GIF version

Theorem fneq1d 5411
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
fneq1d (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))

Proof of Theorem fneq1d
StepHypRef Expression
1 fneq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 fneq1 5409 . 2 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
31, 2syl 14 1 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395   Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-fun 5320  df-fn 5321
This theorem is referenced by:  fneq12d  5413  f1o00  5610  f1ompt  5788  fmpt2d  5799  f1ocnvd  6214  offval2  6240  ofrfval2  6241  caofinvl  6250  f1od2  6387  cc3  7462  ccatvalfn  11144  swrdlen  11192  plusffng  13406  grpinvfng  13585  grpinvf1o  13611  mulgfng  13669  srg1zr  13958  scaffng  14281  neif  14823  fnmptd  16192
  Copyright terms: Public domain W3C validator