ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2i GIF version

Theorem fneq2i 5154
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
fneq2i.1 𝐴 = 𝐵
Assertion
Ref Expression
fneq2i (𝐹 Fn 𝐴𝐹 Fn 𝐵)

Proof of Theorem fneq2i
StepHypRef Expression
1 fneq2i.1 . 2 𝐴 = 𝐵
2 fneq2 5148 . 2 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
31, 2ax-mp 7 1 (𝐹 Fn 𝐴𝐹 Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1299   Fn wfn 5054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393  ax-4 1455  ax-17 1474  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-cleq 2093  df-fn 5062
This theorem is referenced by:  fnunsn  5166  tpos0  6101  dfixp  6524  ser0f  10129
  Copyright terms: Public domain W3C validator