ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2i Unicode version

Theorem fneq2i 5349
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
fneq2i.1  |-  A  =  B
Assertion
Ref Expression
fneq2i  |-  ( F  Fn  A  <->  F  Fn  B )

Proof of Theorem fneq2i
StepHypRef Expression
1 fneq2i.1 . 2  |-  A  =  B
2 fneq2 5343 . 2  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
31, 2ax-mp 5 1  |-  ( F  Fn  A  <->  F  Fn  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5257
This theorem is referenced by:  fnunsn  5361  tpos0  6327  dfixp  6754  xnn0nnen  10508  ser0f  10605  fnpr2o  12922
  Copyright terms: Public domain W3C validator