ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq2i Unicode version

Theorem fneq2i 5369
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
fneq2i.1  |-  A  =  B
Assertion
Ref Expression
fneq2i  |-  ( F  Fn  A  <->  F  Fn  B )

Proof of Theorem fneq2i
StepHypRef Expression
1 fneq2i.1 . 2  |-  A  =  B
2 fneq2 5363 . 2  |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
31, 2ax-mp 5 1  |-  ( F  Fn  A  <->  F  Fn  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-fn 5274
This theorem is referenced by:  fnunsn  5383  tpos0  6360  dfixp  6787  xnn0nnen  10582  ser0f  10679  fnpr2o  13171
  Copyright terms: Public domain W3C validator