ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser0f GIF version

Theorem ser0f 10626
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
Hypothesis
Ref Expression
ser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
ser0f (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))

Proof of Theorem ser0f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ser0.1 . . . . 5 𝑍 = (ℤ𝑀)
21ser0 10625 . . . 4 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0)
3 c0ex 8020 . . . . 5 0 ∈ V
43fvconst2 5778 . . . 4 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) = 0)
52, 4eqtr4d 2232 . . 3 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))
65rgen 2550 . 2 𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)
7 eqid 2196 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
8 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
91eleq2i 2263 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
10 0cnd 8019 . . . . . . . . 9 (𝑘𝑍 → 0 ∈ ℂ)
114, 10eqeltrd 2273 . . . . . . . 8 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ)
129, 11sylbir 135 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
1312adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
147, 8, 13serf 10575 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ𝑀)⟶ℂ)
1514ffnd 5408 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
161fneq2i 5353 . . . 4 (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
1715, 16sylibr 134 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍)
183fconst 5453 . . . 4 (𝑍 × {0}):𝑍⟶{0}
19 ffn 5407 . . . 4 ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍)
2018, 19ax-mp 5 . . 3 (𝑍 × {0}) Fn 𝑍
21 eqfnfv 5659 . . 3 ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
2217, 20, 21sylancl 413 . 2 (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
236, 22mpbiri 168 1 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wral 2475  {csn 3622   × cxp 4661   Fn wfn 5253  wf 5254  cfv 5258  cc 7877  0cc0 7879   + caddc 7882  cz 9326  cuz 9601  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  serclim0  11470
  Copyright terms: Public domain W3C validator