ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser0f GIF version

Theorem ser0f 10608
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
Hypothesis
Ref Expression
ser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
ser0f (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))

Proof of Theorem ser0f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ser0.1 . . . . 5 𝑍 = (ℤ𝑀)
21ser0 10607 . . . 4 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0)
3 c0ex 8015 . . . . 5 0 ∈ V
43fvconst2 5775 . . . 4 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) = 0)
52, 4eqtr4d 2229 . . 3 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))
65rgen 2547 . 2 𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)
7 eqid 2193 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
8 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
91eleq2i 2260 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
10 0cnd 8014 . . . . . . . . 9 (𝑘𝑍 → 0 ∈ ℂ)
114, 10eqeltrd 2270 . . . . . . . 8 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ)
129, 11sylbir 135 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
1312adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
147, 8, 13serf 10557 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ𝑀)⟶ℂ)
1514ffnd 5405 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
161fneq2i 5350 . . . 4 (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
1715, 16sylibr 134 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍)
183fconst 5450 . . . 4 (𝑍 × {0}):𝑍⟶{0}
19 ffn 5404 . . . 4 ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍)
2018, 19ax-mp 5 . . 3 (𝑍 × {0}) Fn 𝑍
21 eqfnfv 5656 . . 3 ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
2217, 20, 21sylancl 413 . 2 (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
236, 22mpbiri 168 1 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  wral 2472  {csn 3619   × cxp 4658   Fn wfn 5250  wf 5251  cfv 5255  cc 7872  0cc0 7874   + caddc 7877  cz 9320  cuz 9595  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522
This theorem is referenced by:  serclim0  11451
  Copyright terms: Public domain W3C validator