Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser0f GIF version

Theorem ser0f 10281
 Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
Hypothesis
Ref Expression
ser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
ser0f (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))

Proof of Theorem ser0f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ser0.1 . . . . 5 𝑍 = (ℤ𝑀)
21ser0 10280 . . . 4 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0)
3 c0ex 7753 . . . . 5 0 ∈ V
43fvconst2 5629 . . . 4 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) = 0)
52, 4eqtr4d 2173 . . 3 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))
65rgen 2483 . 2 𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)
7 eqid 2137 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
8 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
91eleq2i 2204 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
10 0cnd 7752 . . . . . . . . 9 (𝑘𝑍 → 0 ∈ ℂ)
114, 10eqeltrd 2214 . . . . . . . 8 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ)
129, 11sylbir 134 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
1312adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
147, 8, 13serf 10240 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ𝑀)⟶ℂ)
1514ffnd 5268 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
161fneq2i 5213 . . . 4 (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
1715, 16sylibr 133 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍)
183fconst 5313 . . . 4 (𝑍 × {0}):𝑍⟶{0}
19 ffn 5267 . . . 4 ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍)
2018, 19ax-mp 5 . . 3 (𝑍 × {0}) Fn 𝑍
21 eqfnfv 5511 . . 3 ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
2217, 20, 21sylancl 409 . 2 (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
236, 22mpbiri 167 1 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1331   ∈ wcel 1480  ∀wral 2414  {csn 3522   × cxp 4532   Fn wfn 5113  ⟶wf 5114  ‘cfv 5118  ℂcc 7611  0cc0 7613   + caddc 7616  ℤcz 9047  ℤ≥cuz 9319  seqcseq 10211 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913  df-seqfrec 10212 This theorem is referenced by:  serclim0  11067
 Copyright terms: Public domain W3C validator