| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ser0f | GIF version | ||
| Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| ser0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) | 
| Ref | Expression | 
|---|---|
| ser0f | ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ser0.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | ser0 10625 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0) | 
| 3 | c0ex 8020 | . . . . 5 ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 5778 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) = 0) | 
| 5 | 2, 4 | eqtr4d 2232 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)) | 
| 6 | 5 | rgen 2550 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘) | 
| 7 | eqid 2196 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 8 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 9 | 1 | eleq2i 2263 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 10 | 0cnd 8019 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 → 0 ∈ ℂ) | |
| 11 | 4, 10 | eqeltrd 2273 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ) | 
| 12 | 9, 11 | sylbir 135 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ) | 
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ) | 
| 14 | 7, 8, 13 | serf 10575 | . . . . 5 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ≥‘𝑀)⟶ℂ) | 
| 15 | 14 | ffnd 5408 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) | 
| 16 | 1 | fneq2i 5353 | . . . 4 ⊢ (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) | 
| 17 | 15, 16 | sylibr 134 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍) | 
| 18 | 3 | fconst 5453 | . . . 4 ⊢ (𝑍 × {0}):𝑍⟶{0} | 
| 19 | ffn 5407 | . . . 4 ⊢ ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (𝑍 × {0}) Fn 𝑍 | 
| 21 | eqfnfv 5659 | . . 3 ⊢ ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) | |
| 22 | 17, 20, 21 | sylancl 413 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) | 
| 23 | 6, 22 | mpbiri 168 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {csn 3622 × cxp 4661 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 ℂcc 7877 0cc0 7879 + caddc 7882 ℤcz 9326 ℤ≥cuz 9601 seqcseq 10539 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 df-seqfrec 10540 | 
| This theorem is referenced by: serclim0 11470 | 
| Copyright terms: Public domain | W3C validator |