ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser0f GIF version

Theorem ser0f 10701
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
Hypothesis
Ref Expression
ser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
ser0f (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))

Proof of Theorem ser0f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ser0.1 . . . . 5 𝑍 = (ℤ𝑀)
21ser0 10700 . . . 4 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0)
3 c0ex 8086 . . . . 5 0 ∈ V
43fvconst2 5813 . . . 4 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) = 0)
52, 4eqtr4d 2242 . . 3 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))
65rgen 2560 . 2 𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)
7 eqid 2206 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
8 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
91eleq2i 2273 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
10 0cnd 8085 . . . . . . . . 9 (𝑘𝑍 → 0 ∈ ℂ)
114, 10eqeltrd 2283 . . . . . . . 8 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ)
129, 11sylbir 135 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
1312adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
147, 8, 13serf 10650 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ𝑀)⟶ℂ)
1514ffnd 5436 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
161fneq2i 5378 . . . 4 (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
1715, 16sylibr 134 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍)
183fconst 5483 . . . 4 (𝑍 × {0}):𝑍⟶{0}
19 ffn 5435 . . . 4 ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍)
2018, 19ax-mp 5 . . 3 (𝑍 × {0}) Fn 𝑍
21 eqfnfv 5690 . . 3 ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
2217, 20, 21sylancl 413 . 2 (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
236, 22mpbiri 168 1 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wral 2485  {csn 3638   × cxp 4681   Fn wfn 5275  wf 5276  cfv 5280  cc 7943  0cc0 7945   + caddc 7948  cz 9392  cuz 9668  seqcseq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615
This theorem is referenced by:  serclim0  11691
  Copyright terms: Public domain W3C validator