| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ser0f | GIF version | ||
| Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) |
| Ref | Expression |
|---|---|
| ser0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| ser0f | ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ser0.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | ser0 10750 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0) |
| 3 | c0ex 8136 | . . . . 5 ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 5854 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) = 0) |
| 5 | 2, 4 | eqtr4d 2265 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)) |
| 6 | 5 | rgen 2583 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘) |
| 7 | eqid 2229 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 8 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 9 | 1 | eleq2i 2296 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 10 | 0cnd 8135 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 → 0 ∈ ℂ) | |
| 11 | 4, 10 | eqeltrd 2306 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
| 12 | 9, 11 | sylbir 135 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
| 14 | 7, 8, 13 | serf 10700 | . . . . 5 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ≥‘𝑀)⟶ℂ) |
| 15 | 14 | ffnd 5473 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) |
| 16 | 1 | fneq2i 5415 | . . . 4 ⊢ (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) |
| 17 | 15, 16 | sylibr 134 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍) |
| 18 | 3 | fconst 5520 | . . . 4 ⊢ (𝑍 × {0}):𝑍⟶{0} |
| 19 | ffn 5472 | . . . 4 ⊢ ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (𝑍 × {0}) Fn 𝑍 |
| 21 | eqfnfv 5731 | . . 3 ⊢ ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) | |
| 22 | 17, 20, 21 | sylancl 413 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) |
| 23 | 6, 22 | mpbiri 168 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {csn 3666 × cxp 4716 Fn wfn 5312 ⟶wf 5313 ‘cfv 5317 ℂcc 7993 0cc0 7995 + caddc 7998 ℤcz 9442 ℤ≥cuz 9718 seqcseq 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 |
| This theorem is referenced by: serclim0 11811 |
| Copyright terms: Public domain | W3C validator |