ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser0f GIF version

Theorem ser0f 10065
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
Hypothesis
Ref Expression
ser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
ser0f (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))

Proof of Theorem ser0f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ser0.1 . . . . 5 𝑍 = (ℤ𝑀)
21ser0 10064 . . . 4 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0)
3 c0ex 7579 . . . . 5 0 ∈ V
43fvconst2 5552 . . . 4 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) = 0)
52, 4eqtr4d 2130 . . 3 (𝑘𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))
65rgen 2439 . 2 𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)
7 eqid 2095 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
8 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
91eleq2i 2161 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
10 0cnd 7578 . . . . . . . . 9 (𝑘𝑍 → 0 ∈ ℂ)
114, 10eqeltrd 2171 . . . . . . . 8 (𝑘𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ)
129, 11sylbir 134 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
1312adantl 272 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
147, 8, 13serf 10024 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})):(ℤ𝑀)⟶ℂ)
1514ffnd 5196 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
161fneq2i 5143 . . . 4 (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ𝑀))
1715, 16sylibr 133 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍)
183fconst 5241 . . . 4 (𝑍 × {0}):𝑍⟶{0}
19 ffn 5195 . . . 4 ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍)
2018, 19ax-mp 7 . . 3 (𝑍 × {0}) Fn 𝑍
21 eqfnfv 5436 . . 3 ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
2217, 20, 21sylancl 405 . 2 (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)))
236, 22mpbiri 167 1 (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1296  wcel 1445  wral 2370  {csn 3466   × cxp 4465   Fn wfn 5044  wf 5045  cfv 5049  cc 7445  0cc0 7447   + caddc 7450  cz 8848  cuz 9118  seqcseq 10000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574  df-fzo 9703  df-seqfrec 10001
This theorem is referenced by:  serclim0  10848
  Copyright terms: Public domain W3C validator