ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnunsn GIF version

Theorem fnunsn 5295
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
fnunop.x (𝜑𝑋 ∈ V)
fnunop.y (𝜑𝑌 ∈ V)
fnunop.f (𝜑𝐹 Fn 𝐷)
fnunop.g 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
fnunop.e 𝐸 = (𝐷 ∪ {𝑋})
fnunop.d (𝜑 → ¬ 𝑋𝐷)
Assertion
Ref Expression
fnunsn (𝜑𝐺 Fn 𝐸)

Proof of Theorem fnunsn
StepHypRef Expression
1 fnunop.f . . 3 (𝜑𝐹 Fn 𝐷)
2 fnunop.x . . . 4 (𝜑𝑋 ∈ V)
3 fnunop.y . . . 4 (𝜑𝑌 ∈ V)
4 fnsng 5235 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
52, 3, 4syl2anc 409 . . 3 (𝜑 → {⟨𝑋, 𝑌⟩} Fn {𝑋})
6 fnunop.d . . . 4 (𝜑 → ¬ 𝑋𝐷)
7 disjsn 3638 . . . 4 ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐷)
86, 7sylibr 133 . . 3 (𝜑 → (𝐷 ∩ {𝑋}) = ∅)
9 fnun 5294 . . 3 (((𝐹 Fn 𝐷 ∧ {⟨𝑋, 𝑌⟩} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
101, 5, 8, 9syl21anc 1227 . 2 (𝜑 → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
11 fnunop.g . . . 4 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
1211fneq1i 5282 . . 3 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸)
13 fnunop.e . . . 4 𝐸 = (𝐷 ∪ {𝑋})
1413fneq2i 5283 . . 3 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1512, 14bitri 183 . 2 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1610, 15sylibr 133 1 (𝜑𝐺 Fn 𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  cun 3114  cin 3115  c0 3409  {csn 3576  cop 3579   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191
This theorem is referenced by:  tfrlemisucfn  6292  tfr1onlemsucfn  6308
  Copyright terms: Public domain W3C validator