| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fnunsn | GIF version | ||
| Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| fnunop.x | ⊢ (𝜑 → 𝑋 ∈ V) | 
| fnunop.y | ⊢ (𝜑 → 𝑌 ∈ V) | 
| fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) | 
| fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | 
| fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | 
| fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | 
| Ref | Expression | 
|---|---|
| fnunsn | ⊢ (𝜑 → 𝐺 Fn 𝐸) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 4 | fnsng 5305 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) | 
| 6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
| 7 | disjsn 3684 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
| 8 | 6, 7 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) | 
| 9 | fnun 5364 | . . 3 ⊢ (((𝐹 Fn 𝐷 ∧ {〈𝑋, 𝑌〉} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | |
| 10 | 1, 5, 8, 9 | syl21anc 1248 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | 
| 11 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
| 12 | 11 | fneq1i 5352 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) | 
| 13 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
| 14 | 13 | fneq2i 5353 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | 
| 15 | 12, 14 | bitri 184 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | 
| 16 | 10, 15 | sylibr 134 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ∩ cin 3156 ∅c0 3450 {csn 3622 〈cop 3625 Fn wfn 5253 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 df-fn 5261 | 
| This theorem is referenced by: tfrlemisucfn 6382 tfr1onlemsucfn 6398 | 
| Copyright terms: Public domain | W3C validator |