ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnunsn GIF version

Theorem fnunsn 5365
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
fnunop.x (𝜑𝑋 ∈ V)
fnunop.y (𝜑𝑌 ∈ V)
fnunop.f (𝜑𝐹 Fn 𝐷)
fnunop.g 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
fnunop.e 𝐸 = (𝐷 ∪ {𝑋})
fnunop.d (𝜑 → ¬ 𝑋𝐷)
Assertion
Ref Expression
fnunsn (𝜑𝐺 Fn 𝐸)

Proof of Theorem fnunsn
StepHypRef Expression
1 fnunop.f . . 3 (𝜑𝐹 Fn 𝐷)
2 fnunop.x . . . 4 (𝜑𝑋 ∈ V)
3 fnunop.y . . . 4 (𝜑𝑌 ∈ V)
4 fnsng 5305 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
52, 3, 4syl2anc 411 . . 3 (𝜑 → {⟨𝑋, 𝑌⟩} Fn {𝑋})
6 fnunop.d . . . 4 (𝜑 → ¬ 𝑋𝐷)
7 disjsn 3684 . . . 4 ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐷)
86, 7sylibr 134 . . 3 (𝜑 → (𝐷 ∩ {𝑋}) = ∅)
9 fnun 5364 . . 3 (((𝐹 Fn 𝐷 ∧ {⟨𝑋, 𝑌⟩} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
101, 5, 8, 9syl21anc 1248 . 2 (𝜑 → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
11 fnunop.g . . . 4 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
1211fneq1i 5352 . . 3 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸)
13 fnunop.e . . . 4 𝐸 = (𝐷 ∪ {𝑋})
1413fneq2i 5353 . . 3 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1512, 14bitri 184 . 2 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1610, 15sylibr 134 1 (𝜑𝐺 Fn 𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  c0 3450  {csn 3622  cop 3625   Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260  df-fn 5261
This theorem is referenced by:  tfrlemisucfn  6382  tfr1onlemsucfn  6398
  Copyright terms: Public domain W3C validator