![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnunsn | GIF version |
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
fnunop.x | ⊢ (𝜑 → 𝑋 ∈ V) |
fnunop.y | ⊢ (𝜑 → 𝑌 ∈ V) |
fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnunsn | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) | |
3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
4 | fnsng 5061 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
5 | 2, 3, 4 | syl2anc 403 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
7 | disjsn 3504 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
8 | 6, 7 | sylibr 132 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
9 | fnun 5120 | . . 3 ⊢ (((𝐹 Fn 𝐷 ∧ {〈𝑋, 𝑌〉} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | |
10 | 1, 5, 8, 9 | syl21anc 1173 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
11 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
12 | 11 | fneq1i 5108 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
13 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
14 | 13 | fneq2i 5109 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
15 | 12, 14 | bitri 182 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
16 | 10, 15 | sylibr 132 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1289 ∈ wcel 1438 Vcvv 2619 ∪ cun 2997 ∩ cin 2998 ∅c0 3286 {csn 3446 〈cop 3449 Fn wfn 5010 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-fun 5017 df-fn 5018 |
This theorem is referenced by: tfrlemisucfn 6089 tfr1onlemsucfn 6105 |
Copyright terms: Public domain | W3C validator |