![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnunsn | GIF version |
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
fnunop.x | ⊢ (𝜑 → 𝑋 ∈ V) |
fnunop.y | ⊢ (𝜑 → 𝑌 ∈ V) |
fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnunsn | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) | |
3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
4 | fnsng 5275 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
5 | 2, 3, 4 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
7 | disjsn 3666 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
8 | 6, 7 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
9 | fnun 5334 | . . 3 ⊢ (((𝐹 Fn 𝐷 ∧ {〈𝑋, 𝑌〉} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | |
10 | 1, 5, 8, 9 | syl21anc 1247 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
11 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
12 | 11 | fneq1i 5322 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
13 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
14 | 13 | fneq2i 5323 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
15 | 12, 14 | bitri 184 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
16 | 10, 15 | sylibr 134 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ∪ cun 3139 ∩ cin 3140 ∅c0 3434 {csn 3604 〈cop 3607 Fn wfn 5223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-fun 5230 df-fn 5231 |
This theorem is referenced by: tfrlemisucfn 6338 tfr1onlemsucfn 6354 |
Copyright terms: Public domain | W3C validator |