| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnunsn | GIF version | ||
| Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnunop.x | ⊢ (𝜑 → 𝑋 ∈ V) |
| fnunop.y | ⊢ (𝜑 → 𝑌 ∈ V) |
| fnunop.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| fnunop.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) |
| fnunop.e | ⊢ 𝐸 = (𝐷 ∪ {𝑋}) |
| fnunop.d | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnunsn | ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | fnunop.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 3 | fnunop.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 4 | fnsng 5327 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {〈𝑋, 𝑌〉} Fn {𝑋}) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈𝑋, 𝑌〉} Fn {𝑋}) |
| 6 | fnunop.d | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐷) | |
| 7 | disjsn 3697 | . . . 4 ⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐷) | |
| 8 | 6, 7 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐷 ∩ {𝑋}) = ∅) |
| 9 | fnun 5388 | . . 3 ⊢ (((𝐹 Fn 𝐷 ∧ {〈𝑋, 𝑌〉} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) | |
| 10 | 1, 5, 8, 9 | syl21anc 1249 | . 2 ⊢ (𝜑 → (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 11 | fnunop.g | . . . 4 ⊢ 𝐺 = (𝐹 ∪ {〈𝑋, 𝑌〉}) | |
| 12 | 11 | fneq1i 5374 | . . 3 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸) |
| 13 | fnunop.e | . . . 4 ⊢ 𝐸 = (𝐷 ∪ {𝑋}) | |
| 14 | 13 | fneq2i 5375 | . . 3 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 15 | 12, 14 | bitri 184 | . 2 ⊢ (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}) Fn (𝐷 ∪ {𝑋})) |
| 16 | 10, 15 | sylibr 134 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3166 ∩ cin 3167 ∅c0 3462 {csn 3635 〈cop 3638 Fn wfn 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-fun 5279 df-fn 5280 |
| This theorem is referenced by: tfrlemisucfn 6420 tfr1onlemsucfn 6436 |
| Copyright terms: Public domain | W3C validator |