![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnpr2o | GIF version |
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fnpr2o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 4627 | . . . 4 ⊢ ∅ ∈ ω | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ ω) |
3 | 1onn 6575 | . . . 4 ⊢ 1o ∈ ω | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1o ∈ ω) |
5 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
6 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
7 | 1n0 6487 | . . . . 5 ⊢ 1o ≠ ∅ | |
8 | 7 | necomi 2449 | . . . 4 ⊢ ∅ ≠ 1o |
9 | 8 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ≠ 1o) |
10 | fnprg 5310 | . . 3 ⊢ (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1o) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) | |
11 | 2, 4, 5, 6, 9, 10 | syl221anc 1260 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
12 | df2o3 6485 | . . 3 ⊢ 2o = {∅, 1o} | |
13 | 12 | fneq2i 5350 | . 2 ⊢ ({〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o ↔ {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn {∅, 1o}) |
14 | 11, 13 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈∅, 𝐴〉, 〈1o, 𝐵〉} Fn 2o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ≠ wne 2364 ∅c0 3447 {cpr 3620 〈cop 3622 ωcom 4623 Fn wfn 5250 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-fun 5257 df-fn 5258 df-1o 6471 df-2o 6472 |
This theorem is referenced by: fnpr2ob 12926 xpsfeq 12931 xpsfrnel2 12932 |
Copyright terms: Public domain | W3C validator |