ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpr2o GIF version

Theorem fnpr2o 12758
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fnpr2o ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)

Proof of Theorem fnpr2o
StepHypRef Expression
1 peano1 4594 . . . 4 ∅ ∈ ω
21a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ∈ ω)
3 1onn 6521 . . . 4 1o ∈ ω
43a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → 1o ∈ ω)
5 simpl 109 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 110 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
7 1n0 6433 . . . . 5 1o ≠ ∅
87necomi 2432 . . . 4 ∅ ≠ 1o
98a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ≠ 1o)
10 fnprg 5272 . . 3 (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴𝑉𝐵𝑊) ∧ ∅ ≠ 1o) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
112, 4, 5, 6, 9, 10syl221anc 1249 . 2 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
12 df2o3 6431 . . 3 2o = {∅, 1o}
1312fneq2i 5312 . 2 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
1411, 13sylibr 134 1 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wne 2347  c0 3423  {cpr 3594  cop 3596  ωcom 4590   Fn wfn 5212  1oc1o 6410  2oc2o 6411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219  df-fn 5220  df-1o 6417  df-2o 6418
This theorem is referenced by:  fnpr2ob  12759  xpsfeq  12764  xpsfrnel2  12765
  Copyright terms: Public domain W3C validator