![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnpr2o | GIF version |
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fnpr2o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 4594 | . . . 4 ⊢ ∅ ∈ ω | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ∈ ω) |
3 | 1onn 6521 | . . . 4 ⊢ 1o ∈ ω | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1o ∈ ω) |
5 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
6 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
7 | 1n0 6433 | . . . . 5 ⊢ 1o ≠ ∅ | |
8 | 7 | necomi 2432 | . . . 4 ⊢ ∅ ≠ 1o |
9 | 8 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∅ ≠ 1o) |
10 | fnprg 5272 | . . 3 ⊢ (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∅ ≠ 1o) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o}) | |
11 | 2, 4, 5, 6, 9, 10 | syl221anc 1249 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o}) |
12 | df2o3 6431 | . . 3 ⊢ 2o = {∅, 1o} | |
13 | 12 | fneq2i 5312 | . 2 ⊢ ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o}) |
14 | 11, 13 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ≠ wne 2347 ∅c0 3423 {cpr 3594 ⟨cop 3596 ωcom 4590 Fn wfn 5212 1oc1o 6410 2oc2o 6411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-fun 5219 df-fn 5220 df-1o 6417 df-2o 6418 |
This theorem is referenced by: fnpr2ob 12759 xpsfeq 12764 xpsfrnel2 12765 |
Copyright terms: Public domain | W3C validator |