Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfixp | GIF version |
Description: Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 6677, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥 ∈ 𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.) |
Ref | Expression |
---|---|
dfixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 6677 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
2 | abid2 2291 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | fneq2i 5293 | . . . 4 ⊢ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑓 Fn 𝐴) |
4 | 3 | anbi1i 455 | . . 3 ⊢ ((𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
5 | 4 | abbii 2286 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
6 | 1, 5 | eqtri 2191 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 Fn wfn 5193 ‘cfv 5198 Xcixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-fn 5201 df-ixp 6677 |
This theorem is referenced by: ixpsnval 6679 elixp2 6680 ixpeq1 6687 cbvixp 6693 ixp0x 6704 |
Copyright terms: Public domain | W3C validator |