ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffn GIF version

Theorem nffn 5379
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1 𝑥𝐹
nffn.2 𝑥𝐴
Assertion
Ref Expression
nffn 𝑥 𝐹 Fn 𝐴

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 5283 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 nffn.1 . . . 4 𝑥𝐹
32nffun 5303 . . 3 𝑥Fun 𝐹
42nfdm 4931 . . . 4 𝑥dom 𝐹
5 nffn.2 . . . 4 𝑥𝐴
64, 5nfeq 2357 . . 3 𝑥dom 𝐹 = 𝐴
73, 6nfan 1589 . 2 𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴)
81, 7nfxfr 1498 1 𝑥 𝐹 Fn 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wnf 1484  wnfc 2336  dom cdm 4683  Fun wfun 5274   Fn wfn 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-fun 5282  df-fn 5283
This theorem is referenced by:  nff  5432  nffo  5509  nfixpxy  6817  nfixp1  6818
  Copyright terms: Public domain W3C validator