| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffn | GIF version | ||
| Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffn.1 | ⊢ Ⅎ𝑥𝐹 |
| nffn.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffn | ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5271 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | nffn.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nffun 5291 | . . 3 ⊢ Ⅎ𝑥Fun 𝐹 |
| 4 | 2 | nfdm 4920 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 5 | nffn.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 4, 5 | nfeq 2355 | . . 3 ⊢ Ⅎ𝑥dom 𝐹 = 𝐴 |
| 7 | 3, 6 | nfan 1587 | . 2 ⊢ Ⅎ𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴) |
| 8 | 1, 7 | nfxfr 1496 | 1 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 Ⅎwnf 1482 Ⅎwnfc 2334 dom cdm 4673 Fun wfun 5262 Fn wfn 5263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-fun 5270 df-fn 5271 |
| This theorem is referenced by: nff 5416 nffo 5491 nfixpxy 6794 nfixp1 6795 |
| Copyright terms: Public domain | W3C validator |