ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffn GIF version

Theorem nffn 5265
Description: Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
Hypotheses
Ref Expression
nffn.1 𝑥𝐹
nffn.2 𝑥𝐴
Assertion
Ref Expression
nffn 𝑥 𝐹 Fn 𝐴

Proof of Theorem nffn
StepHypRef Expression
1 df-fn 5172 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 nffn.1 . . . 4 𝑥𝐹
32nffun 5192 . . 3 𝑥Fun 𝐹
42nfdm 4829 . . . 4 𝑥dom 𝐹
5 nffn.2 . . . 4 𝑥𝐴
64, 5nfeq 2307 . . 3 𝑥dom 𝐹 = 𝐴
73, 6nfan 1545 . 2 𝑥(Fun 𝐹 ∧ dom 𝐹 = 𝐴)
81, 7nfxfr 1454 1 𝑥 𝐹 Fn 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wnf 1440  wnfc 2286  dom cdm 4585  Fun wfun 5163   Fn wfn 5164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-fun 5171  df-fn 5172
This theorem is referenced by:  nff  5315  nffo  5390  nfixpxy  6659  nfixp1  6660
  Copyright terms: Public domain W3C validator