![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpos0 | GIF version |
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tpos0 | ⊢ tpos ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 4622 | . . . 4 ⊢ Rel ∅ | |
2 | eqid 2113 | . . . . 5 ⊢ ∅ = ∅ | |
3 | fn0 5198 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
4 | 2, 3 | mpbir 145 | . . . 4 ⊢ ∅ Fn ∅ |
5 | tposfn2 6115 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
6 | 1, 4, 5 | mp2 16 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
7 | cnv0 4898 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 7 | fneq2i 5174 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
9 | 6, 8 | mpbi 144 | . 2 ⊢ tpos ∅ Fn ∅ |
10 | fn0 5198 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
11 | 9, 10 | mpbi 144 | 1 ⊢ tpos ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∅c0 3327 ◡ccnv 4496 Rel wrel 4502 Fn wfn 5074 tpos ctpos 6093 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-fv 5087 df-tpos 6094 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |