Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpos0 | GIF version |
Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tpos0 | ⊢ tpos ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 4729 | . . . 4 ⊢ Rel ∅ | |
2 | eqid 2165 | . . . . 5 ⊢ ∅ = ∅ | |
3 | fn0 5307 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
4 | 2, 3 | mpbir 145 | . . . 4 ⊢ ∅ Fn ∅ |
5 | tposfn2 6234 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
6 | 1, 4, 5 | mp2 16 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
7 | cnv0 5007 | . . . 4 ⊢ ◡∅ = ∅ | |
8 | 7 | fneq2i 5283 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
9 | 6, 8 | mpbi 144 | . 2 ⊢ tpos ∅ Fn ∅ |
10 | fn0 5307 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
11 | 9, 10 | mpbi 144 | 1 ⊢ tpos ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∅c0 3409 ◡ccnv 4603 Rel wrel 4609 Fn wfn 5183 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |