ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfor GIF version

Theorem nfor 1567
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypotheses
Ref Expression
nfor.1 𝑥𝜑
nfor.2 𝑥𝜓
Assertion
Ref Expression
nfor 𝑥(𝜑𝜓)

Proof of Theorem nfor
StepHypRef Expression
1 nfor.1 . . . 4 𝑥𝜑
21nfri 1512 . . 3 (𝜑 → ∀𝑥𝜑)
3 nfor.2 . . . 4 𝑥𝜓
43nfri 1512 . . 3 (𝜓 → ∀𝑥𝜓)
52, 4hbor 1539 . 2 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
65nfi 1455 1 𝑥(𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wo 703  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfdc  1652  nfun  3283  nfpr  3633  nfso  4287  nffrec  6375  indpi  7304  nfsum1  11319  nfsum  11320  nfcprod1  11517  nfcprod  11518  bj-findis  14014  isomninnlem  14062  trirec0  14076
  Copyright terms: Public domain W3C validator