| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfor | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∨ 𝜓). (Contributed by Jim Kingdon, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfor.1 | ⊢ Ⅎ𝑥𝜑 |
| nfor.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfor | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfor.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1543 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | nfor.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfri 1543 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) |
| 5 | 2, 4 | hbor 1570 | . 2 ⊢ ((𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| 6 | 5 | nfi 1486 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-gen 1473 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfdc 1683 nfun 3333 nfpr 3688 nfso 4357 nffrec 6495 indpi 7475 nfsum1 11742 nfsum 11743 nfcprod1 11940 nfcprod 11941 bj-findis 16053 isomninnlem 16110 trirec0 16124 |
| Copyright terms: Public domain | W3C validator |