| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a5i | GIF version | ||
| Description: Inference generalizing a consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| a5i.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| a5i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1554 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | ax-5 1461 | . . 3 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl5 32 | . 2 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | a5i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 5 | 3, 4 | mpg 1465 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-ial 1548 |
| This theorem is referenced by: hbae 1732 equveli 1773 hbsb2a 1820 hbsb2e 1821 aev 1826 dveeq2or 1830 hbsb2 1850 nfsb2or 1851 reu6 2953 |
| Copyright terms: Public domain | W3C validator |