| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > a5i | GIF version | ||
| Description: Inference generalizing a consequent. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| a5i.1 | ⊢ (∀𝑥𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| a5i | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hba1 1554 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | ax-5 1461 | . . 3 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl5 32 | . 2 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | 
| 4 | a5i.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 5 | 3, 4 | mpg 1465 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-ial 1548 | 
| This theorem is referenced by: hbae 1732 equveli 1773 hbsb2a 1820 hbsb2e 1821 aev 1826 dveeq2or 1830 hbsb2 1850 nfsb2or 1851 reu6 2953 | 
| Copyright terms: Public domain | W3C validator |