ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupcl GIF version

Theorem gcdsupcl 11926
Description: Closure of the supremum used in defining gcd. A lemma for gcdval 11927 and gcdn0cl 11930. (Contributed by Jim Kingdon, 11-Dec-2021.)
Assertion
Ref Expression
gcdsupcl (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ ℕ)
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌

Proof of Theorem gcdsupcl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9253 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈ ℤ)
2 breq1 4001 . . . 4 (𝑛 = 1 → (𝑛𝑋 ↔ 1 ∥ 𝑋))
3 breq1 4001 . . . 4 (𝑛 = 1 → (𝑛𝑌 ↔ 1 ∥ 𝑌))
42, 3anbi12d 473 . . 3 (𝑛 = 1 → ((𝑛𝑋𝑛𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)))
5 1dvds 11780 . . . . 5 (𝑋 ∈ ℤ → 1 ∥ 𝑋)
6 1dvds 11780 . . . . 5 (𝑌 ∈ ℤ → 1 ∥ 𝑌)
75, 6anim12i 338 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
87adantr 276 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
9 elnnuz 9537 . . . . . . 7 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
109biimpri 133 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
11 simpll 527 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑋 ∈ ℤ)
12 dvdsdc 11773 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) → DECID 𝑛𝑋)
1310, 11, 12syl2an2 594 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑋)
14 simplr 528 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑌 ∈ ℤ)
15 dvdsdc 11773 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) → DECID 𝑛𝑌)
1610, 14, 15syl2an2 594 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑌)
17 dcan2 934 . . . . 5 (DECID 𝑛𝑋 → (DECID 𝑛𝑌DECID (𝑛𝑋𝑛𝑌)))
1813, 16, 17sylc 62 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
1918adantlr 477 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
20 simplll 533 . . . . 5 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℤ)
21 dvdsbnd 11924 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
22 nnuz 9536 . . . . . . . 8 ℕ = (ℤ‘1)
2322rexeqi 2675 . . . . . . 7 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
2421, 23sylib 122 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
25 id 19 . . . . . . . . 9 𝑛𝑋 → ¬ 𝑛𝑋)
2625intnanrd 932 . . . . . . . 8 𝑛𝑋 → ¬ (𝑛𝑋𝑛𝑌))
2726ralimi 2538 . . . . . . 7 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2827reximi 2572 . . . . . 6 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2924, 28syl 14 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3020, 29sylancom 420 . . . 4 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
31 simpllr 534 . . . . 5 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
32 dvdsbnd 11924 . . . . . . 7 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3322rexeqi 2675 . . . . . . 7 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3432, 33sylib 122 . . . . . 6 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
35 id 19 . . . . . . . . 9 𝑛𝑌 → ¬ 𝑛𝑌)
3635intnand 931 . . . . . . . 8 𝑛𝑌 → ¬ (𝑛𝑋𝑛𝑌))
3736ralimi 2538 . . . . . . 7 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3837reximi 2572 . . . . . 6 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3934, 38syl 14 . . . . 5 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
4031, 39sylancom 420 . . . 4 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
41 simpr 110 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0))
42 simpll 527 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ)
43 0z 9237 . . . . . . . 8 0 ∈ ℤ
44 zdceq 9301 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑋 = 0)
4542, 43, 44sylancl 413 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → DECID 𝑋 = 0)
46 ianordc 899 . . . . . . 7 (DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4745, 46syl 14 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4841, 47mpbid 147 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
49 df-ne 2346 . . . . . 6 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
50 df-ne 2346 . . . . . 6 (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0)
5149, 50orbi12i 764 . . . . 5 ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
5248, 51sylibr 134 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0))
5330, 40, 52mpjaodan 798 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
541, 4, 8, 19, 53zsupcl 11915 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ (ℤ‘1))
5554, 22eleqtrrdi 2269 1 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2146  wne 2345  wral 2453  wrex 2454  {crab 2457   class class class wbr 3998  cfv 5208  supcsup 6971  cr 7785  0cc0 7786  1c1 7787   < clt 7966  cn 8892  cz 9226  cuz 9501  cdvds 11762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-sup 6973  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-fz 9980  df-fzo 10113  df-fl 10240  df-mod 10293  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-dvds 11763
This theorem is referenced by:  gcdval  11927  gcdn0cl  11930
  Copyright terms: Public domain W3C validator