Step | Hyp | Ref
| Expression |
1 | | 1zzd 9239 |
. . 3
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈
ℤ) |
2 | | breq1 3992 |
. . . 4
⊢ (𝑛 = 1 → (𝑛 ∥ 𝑋 ↔ 1 ∥ 𝑋)) |
3 | | breq1 3992 |
. . . 4
⊢ (𝑛 = 1 → (𝑛 ∥ 𝑌 ↔ 1 ∥ 𝑌)) |
4 | 2, 3 | anbi12d 470 |
. . 3
⊢ (𝑛 = 1 → ((𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))) |
5 | | 1dvds 11767 |
. . . . 5
⊢ (𝑋 ∈ ℤ → 1 ∥
𝑋) |
6 | | 1dvds 11767 |
. . . . 5
⊢ (𝑌 ∈ ℤ → 1 ∥
𝑌) |
7 | 5, 6 | anim12i 336 |
. . . 4
⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1
∥ 𝑋 ∧ 1 ∥
𝑌)) |
8 | 7 | adantr 274 |
. . 3
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)) |
9 | | elnnuz 9523 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
10 | 9 | biimpri 132 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘1) → 𝑛 ∈ ℕ) |
11 | | simpll 524 |
. . . . . 6
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → 𝑋 ∈ ℤ) |
12 | | dvdsdc 11760 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) →
DECID 𝑛
∥ 𝑋) |
13 | 10, 11, 12 | syl2an2 589 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → DECID 𝑛 ∥ 𝑋) |
14 | | simplr 525 |
. . . . . 6
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → 𝑌 ∈ ℤ) |
15 | | dvdsdc 11760 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) →
DECID 𝑛
∥ 𝑌) |
16 | 10, 14, 15 | syl2an2 589 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → DECID 𝑛 ∥ 𝑌) |
17 | | dcan2 929 |
. . . . 5
⊢
(DECID 𝑛 ∥ 𝑋 → (DECID 𝑛 ∥ 𝑌 → DECID (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌))) |
18 | 13, 16, 17 | sylc 62 |
. . . 4
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → DECID (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
19 | 18 | adantlr 474 |
. . 3
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ≥‘1))
→ DECID (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
20 | | simplll 528 |
. . . . 5
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℤ) |
21 | | dvdsbnd 11911 |
. . . . . . 7
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋) |
22 | | nnuz 9522 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
23 | 22 | rexeqi 2670 |
. . . . . . 7
⊢
(∃𝑗 ∈
ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋 ↔ ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋) |
24 | 21, 23 | sylib 121 |
. . . . . 6
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋) |
25 | | id 19 |
. . . . . . . . 9
⊢ (¬
𝑛 ∥ 𝑋 → ¬ 𝑛 ∥ 𝑋) |
26 | 25 | intnanrd 927 |
. . . . . . . 8
⊢ (¬
𝑛 ∥ 𝑋 → ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
27 | 26 | ralimi 2533 |
. . . . . . 7
⊢
(∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋 → ∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
28 | 27 | reximi 2567 |
. . . . . 6
⊢
(∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋 → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
29 | 24, 28 | syl 14 |
. . . . 5
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
30 | 20, 29 | sylancom 418 |
. . . 4
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
31 | | simpllr 529 |
. . . . 5
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ) |
32 | | dvdsbnd 11911 |
. . . . . . 7
⊢ ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌) |
33 | 22 | rexeqi 2670 |
. . . . . . 7
⊢
(∃𝑗 ∈
ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌 ↔ ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌) |
34 | 32, 33 | sylib 121 |
. . . . . 6
⊢ ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌) |
35 | | id 19 |
. . . . . . . . 9
⊢ (¬
𝑛 ∥ 𝑌 → ¬ 𝑛 ∥ 𝑌) |
36 | 35 | intnand 926 |
. . . . . . . 8
⊢ (¬
𝑛 ∥ 𝑌 → ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
37 | 36 | ralimi 2533 |
. . . . . . 7
⊢
(∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌 → ∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
38 | 37 | reximi 2567 |
. . . . . 6
⊢
(∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌 → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
39 | 34, 38 | syl 14 |
. . . . 5
⊢ ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
40 | 31, 39 | sylancom 418 |
. . . 4
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
41 | | simpr 109 |
. . . . . 6
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0)) |
42 | | simpll 524 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ) |
43 | | 0z 9223 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
44 | | zdceq 9287 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑋 = 0) |
45 | 42, 43, 44 | sylancl 411 |
. . . . . . 7
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) →
DECID 𝑋 =
0) |
46 | | ianordc 894 |
. . . . . . 7
⊢
(DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))) |
47 | 45, 46 | syl 14 |
. . . . . 6
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))) |
48 | 41, 47 | mpbid 146 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)) |
49 | | df-ne 2341 |
. . . . . 6
⊢ (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0) |
50 | | df-ne 2341 |
. . . . . 6
⊢ (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0) |
51 | 49, 50 | orbi12i 759 |
. . . . 5
⊢ ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)) |
52 | 48, 51 | sylibr 133 |
. . . 4
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0)) |
53 | 30, 40, 52 | mpjaodan 793 |
. . 3
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
54 | 1, 4, 8, 19, 53 | zsupcl 11902 |
. 2
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}, ℝ, < ) ∈
(ℤ≥‘1)) |
55 | 54, 22 | eleqtrrdi 2264 |
1
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}, ℝ, < ) ∈
ℕ) |