ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex GIF version

Theorem gcdsupex 11972
Description: Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑋,𝑥,𝑦,𝑧   𝑛,𝑌,𝑥,𝑦,𝑧

Proof of Theorem gcdsupex
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9294 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈ ℤ)
2 breq1 4018 . . 3 (𝑛 = 1 → (𝑛𝑋 ↔ 1 ∥ 𝑋))
3 breq1 4018 . . 3 (𝑛 = 1 → (𝑛𝑌 ↔ 1 ∥ 𝑌))
42, 3anbi12d 473 . 2 (𝑛 = 1 → ((𝑛𝑋𝑛𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)))
5 1dvds 11826 . . . 4 (𝑋 ∈ ℤ → 1 ∥ 𝑋)
6 1dvds 11826 . . . 4 (𝑌 ∈ ℤ → 1 ∥ 𝑌)
75, 6anim12i 338 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
87adantr 276 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
9 elnnuz 9578 . . . . . 6 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
109biimpri 133 . . . . 5 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
11 simpll 527 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑋 ∈ ℤ)
12 dvdsdc 11819 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) → DECID 𝑛𝑋)
1310, 11, 12syl2an2 594 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑋)
14 simplr 528 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑌 ∈ ℤ)
15 dvdsdc 11819 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) → DECID 𝑛𝑌)
1610, 14, 15syl2an2 594 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑌)
17 dcan2 935 . . . 4 (DECID 𝑛𝑋 → (DECID 𝑛𝑌DECID (𝑛𝑋𝑛𝑌)))
1813, 16, 17sylc 62 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
1918adantlr 477 . 2 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
20 simplll 533 . . . 4 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℤ)
21 dvdsbnd 11971 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
22 nnuz 9577 . . . . . . 7 ℕ = (ℤ‘1)
2322rexeqi 2688 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
2421, 23sylib 122 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
25 id 19 . . . . . . . 8 𝑛𝑋 → ¬ 𝑛𝑋)
2625intnanrd 933 . . . . . . 7 𝑛𝑋 → ¬ (𝑛𝑋𝑛𝑌))
2726ralimi 2550 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2827reximi 2584 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2924, 28syl 14 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3020, 29sylancom 420 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
31 simpllr 534 . . . 4 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
32 dvdsbnd 11971 . . . . . 6 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3322rexeqi 2688 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3432, 33sylib 122 . . . . 5 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
35 id 19 . . . . . . . 8 𝑛𝑌 → ¬ 𝑛𝑌)
3635intnand 932 . . . . . . 7 𝑛𝑌 → ¬ (𝑛𝑋𝑛𝑌))
3736ralimi 2550 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3837reximi 2584 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3934, 38syl 14 . . . 4 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
4031, 39sylancom 420 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
41 simpr 110 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0))
42 simpll 527 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ)
43 0z 9278 . . . . . . 7 0 ∈ ℤ
44 zdceq 9342 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑋 = 0)
4542, 43, 44sylancl 413 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → DECID 𝑋 = 0)
46 ianordc 900 . . . . . 6 (DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4745, 46syl 14 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4841, 47mpbid 147 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
49 df-ne 2358 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
50 df-ne 2358 . . . . 5 (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0)
5149, 50orbi12i 765 . . . 4 ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
5248, 51sylibr 134 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0))
5330, 40, 52mpjaodan 799 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
541, 4, 8, 19, 53zsupcllemex 11961 1 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1363  wcel 2158  wne 2357  wral 2465  wrex 2466  {crab 2469   class class class wbr 4015  cfv 5228  cr 7824  0cc0 7825  1c1 7826   < clt 8006  cn 8933  cz 9267  cuz 9542  cdvds 11808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-fl 10284  df-mod 10337  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-dvds 11809
This theorem is referenced by:  gcddvds  11978  dvdslegcd  11979
  Copyright terms: Public domain W3C validator