| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 9353 |
. 2
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈
ℤ) |
| 2 | | breq1 4036 |
. . 3
⊢ (𝑛 = 1 → (𝑛 ∥ 𝑋 ↔ 1 ∥ 𝑋)) |
| 3 | | breq1 4036 |
. . 3
⊢ (𝑛 = 1 → (𝑛 ∥ 𝑌 ↔ 1 ∥ 𝑌)) |
| 4 | 2, 3 | anbi12d 473 |
. 2
⊢ (𝑛 = 1 → ((𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))) |
| 5 | | 1dvds 11970 |
. . . 4
⊢ (𝑋 ∈ ℤ → 1 ∥
𝑋) |
| 6 | | 1dvds 11970 |
. . . 4
⊢ (𝑌 ∈ ℤ → 1 ∥
𝑌) |
| 7 | 5, 6 | anim12i 338 |
. . 3
⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1
∥ 𝑋 ∧ 1 ∥
𝑌)) |
| 8 | 7 | adantr 276 |
. 2
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)) |
| 9 | | elnnuz 9638 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
| 10 | 9 | biimpri 133 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘1) → 𝑛 ∈ ℕ) |
| 11 | | simpll 527 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → 𝑋 ∈ ℤ) |
| 12 | | dvdsdc 11963 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) →
DECID 𝑛
∥ 𝑋) |
| 13 | 10, 11, 12 | syl2an2 594 |
. . . 4
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → DECID 𝑛 ∥ 𝑋) |
| 14 | | simplr 528 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → 𝑌 ∈ ℤ) |
| 15 | | dvdsdc 11963 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) →
DECID 𝑛
∥ 𝑌) |
| 16 | 10, 14, 15 | syl2an2 594 |
. . . 4
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → DECID 𝑛 ∥ 𝑌) |
| 17 | 13, 16 | dcand 934 |
. . 3
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘1)) → DECID (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 18 | 17 | adantlr 477 |
. 2
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ≥‘1))
→ DECID (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 19 | | dvdsbnd 12123 |
. . . . . 6
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋) |
| 20 | | nnuz 9637 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 21 | 20 | rexeqi 2698 |
. . . . . 6
⊢
(∃𝑗 ∈
ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋 ↔ ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋) |
| 22 | 19, 21 | sylib 122 |
. . . . 5
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋) |
| 23 | | id 19 |
. . . . . . . 8
⊢ (¬
𝑛 ∥ 𝑋 → ¬ 𝑛 ∥ 𝑋) |
| 24 | 23 | intnanrd 933 |
. . . . . . 7
⊢ (¬
𝑛 ∥ 𝑋 → ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 25 | 24 | ralimi 2560 |
. . . . . 6
⊢
(∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋 → ∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 26 | 25 | reximi 2594 |
. . . . 5
⊢
(∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑋 → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 27 | 22, 26 | syl 14 |
. . . 4
⊢ ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 28 | 27 | ad4ant14 514 |
. . 3
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 29 | | dvdsbnd 12123 |
. . . . . 6
⊢ ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌) |
| 30 | 20 | rexeqi 2698 |
. . . . . 6
⊢
(∃𝑗 ∈
ℕ ∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌 ↔ ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌) |
| 31 | 29, 30 | sylib 122 |
. . . . 5
⊢ ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌) |
| 32 | | id 19 |
. . . . . . . 8
⊢ (¬
𝑛 ∥ 𝑌 → ¬ 𝑛 ∥ 𝑌) |
| 33 | 32 | intnand 932 |
. . . . . . 7
⊢ (¬
𝑛 ∥ 𝑌 → ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 34 | 33 | ralimi 2560 |
. . . . . 6
⊢
(∀𝑛 ∈
(ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌 → ∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 35 | 34 | reximi 2594 |
. . . . 5
⊢
(∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝑛 ∥ 𝑌 → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 36 | 31, 35 | syl 14 |
. . . 4
⊢ ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 37 | 36 | ad4ant24 516 |
. . 3
⊢ ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 38 | | simpr 110 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0)) |
| 39 | | simpll 527 |
. . . . . . 7
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ) |
| 40 | | 0z 9337 |
. . . . . . 7
⊢ 0 ∈
ℤ |
| 41 | | zdceq 9401 |
. . . . . . 7
⊢ ((𝑋 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑋 = 0) |
| 42 | 39, 40, 41 | sylancl 413 |
. . . . . 6
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) →
DECID 𝑋 =
0) |
| 43 | | ianordc 900 |
. . . . . 6
⊢
(DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))) |
| 44 | 42, 43 | syl 14 |
. . . . 5
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))) |
| 45 | 38, 44 | mpbid 147 |
. . . 4
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)) |
| 46 | | df-ne 2368 |
. . . . 5
⊢ (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0) |
| 47 | | df-ne 2368 |
. . . . 5
⊢ (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0) |
| 48 | 46, 47 | orbi12i 765 |
. . . 4
⊢ ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)) |
| 49 | 45, 48 | sylibr 134 |
. . 3
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0)) |
| 50 | 28, 37, 49 | mpjaodan 799 |
. 2
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈
(ℤ≥‘1)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)) |
| 51 | 1, 4, 8, 18, 50 | zsupcllemex 10320 |
1
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬
(𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}𝑦 < 𝑧))) |