ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex GIF version

Theorem gcdsupex 12444
Description: Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑋,𝑥,𝑦,𝑧   𝑛,𝑌,𝑥,𝑦,𝑧

Proof of Theorem gcdsupex
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9441 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈ ℤ)
2 breq1 4065 . . 3 (𝑛 = 1 → (𝑛𝑋 ↔ 1 ∥ 𝑋))
3 breq1 4065 . . 3 (𝑛 = 1 → (𝑛𝑌 ↔ 1 ∥ 𝑌))
42, 3anbi12d 473 . 2 (𝑛 = 1 → ((𝑛𝑋𝑛𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)))
5 1dvds 12282 . . . 4 (𝑋 ∈ ℤ → 1 ∥ 𝑋)
6 1dvds 12282 . . . 4 (𝑌 ∈ ℤ → 1 ∥ 𝑌)
75, 6anim12i 338 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
87adantr 276 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
9 elnnuz 9727 . . . . . 6 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
109biimpri 133 . . . . 5 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
11 simpll 527 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑋 ∈ ℤ)
12 dvdsdc 12275 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) → DECID 𝑛𝑋)
1310, 11, 12syl2an2 596 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑋)
14 simplr 528 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑌 ∈ ℤ)
15 dvdsdc 12275 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) → DECID 𝑛𝑌)
1610, 14, 15syl2an2 596 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑌)
1713, 16dcand 937 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
1817adantlr 477 . 2 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
19 dvdsbnd 12443 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
20 nnuz 9726 . . . . . . 7 ℕ = (ℤ‘1)
2120rexeqi 2713 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
2219, 21sylib 122 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
23 id 19 . . . . . . . 8 𝑛𝑋 → ¬ 𝑛𝑋)
2423intnanrd 936 . . . . . . 7 𝑛𝑋 → ¬ (𝑛𝑋𝑛𝑌))
2524ralimi 2573 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2625reximi 2607 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2722, 26syl 14 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2827ad4ant14 514 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
29 dvdsbnd 12443 . . . . . 6 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3020rexeqi 2713 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3129, 30sylib 122 . . . . 5 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
32 id 19 . . . . . . . 8 𝑛𝑌 → ¬ 𝑛𝑌)
3332intnand 935 . . . . . . 7 𝑛𝑌 → ¬ (𝑛𝑋𝑛𝑌))
3433ralimi 2573 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3534reximi 2607 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3631, 35syl 14 . . . 4 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3736ad4ant24 516 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
38 simpr 110 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0))
39 simpll 527 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ)
40 0z 9425 . . . . . . 7 0 ∈ ℤ
41 zdceq 9490 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑋 = 0)
4239, 40, 41sylancl 413 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → DECID 𝑋 = 0)
43 ianordc 903 . . . . . 6 (DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4442, 43syl 14 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4538, 44mpbid 147 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
46 df-ne 2381 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
47 df-ne 2381 . . . . 5 (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0)
4846, 47orbi12i 768 . . . 4 ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
4945, 48sylibr 134 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0))
5028, 37, 49mpjaodan 802 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
511, 4, 8, 18, 50zsupcllemex 10417 1 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wne 2380  wral 2488  wrex 2489  {crab 2492   class class class wbr 4062  cfv 5294  cr 7966  0cc0 7967  1c1 7968   < clt 8149  cn 9078  cz 9414  cuz 9690  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265
This theorem is referenced by:  gcddvds  12450  dvdslegcd  12451
  Copyright terms: Public domain W3C validator