ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex GIF version

Theorem gcdsupex 12094
Description: Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑋,𝑥,𝑦,𝑧   𝑛,𝑌,𝑥,𝑦,𝑧

Proof of Theorem gcdsupex
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9344 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈ ℤ)
2 breq1 4032 . . 3 (𝑛 = 1 → (𝑛𝑋 ↔ 1 ∥ 𝑋))
3 breq1 4032 . . 3 (𝑛 = 1 → (𝑛𝑌 ↔ 1 ∥ 𝑌))
42, 3anbi12d 473 . 2 (𝑛 = 1 → ((𝑛𝑋𝑛𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)))
5 1dvds 11948 . . . 4 (𝑋 ∈ ℤ → 1 ∥ 𝑋)
6 1dvds 11948 . . . 4 (𝑌 ∈ ℤ → 1 ∥ 𝑌)
75, 6anim12i 338 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
87adantr 276 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
9 elnnuz 9629 . . . . . 6 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
109biimpri 133 . . . . 5 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
11 simpll 527 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑋 ∈ ℤ)
12 dvdsdc 11941 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) → DECID 𝑛𝑋)
1310, 11, 12syl2an2 594 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑋)
14 simplr 528 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑌 ∈ ℤ)
15 dvdsdc 11941 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) → DECID 𝑛𝑌)
1610, 14, 15syl2an2 594 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑌)
1713, 16dcand 934 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
1817adantlr 477 . 2 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
19 dvdsbnd 12093 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
20 nnuz 9628 . . . . . . 7 ℕ = (ℤ‘1)
2120rexeqi 2695 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
2219, 21sylib 122 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
23 id 19 . . . . . . . 8 𝑛𝑋 → ¬ 𝑛𝑋)
2423intnanrd 933 . . . . . . 7 𝑛𝑋 → ¬ (𝑛𝑋𝑛𝑌))
2524ralimi 2557 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2625reximi 2591 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2722, 26syl 14 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2827ad4ant14 514 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
29 dvdsbnd 12093 . . . . . 6 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3020rexeqi 2695 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3129, 30sylib 122 . . . . 5 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
32 id 19 . . . . . . . 8 𝑛𝑌 → ¬ 𝑛𝑌)
3332intnand 932 . . . . . . 7 𝑛𝑌 → ¬ (𝑛𝑋𝑛𝑌))
3433ralimi 2557 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3534reximi 2591 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3631, 35syl 14 . . . 4 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3736ad4ant24 516 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
38 simpr 110 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0))
39 simpll 527 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ)
40 0z 9328 . . . . . . 7 0 ∈ ℤ
41 zdceq 9392 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑋 = 0)
4239, 40, 41sylancl 413 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → DECID 𝑋 = 0)
43 ianordc 900 . . . . . 6 (DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4442, 43syl 14 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4538, 44mpbid 147 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
46 df-ne 2365 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
47 df-ne 2365 . . . . 5 (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0)
4846, 47orbi12i 765 . . . 4 ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
4945, 48sylibr 134 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0))
5028, 37, 49mpjaodan 799 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
511, 4, 8, 18, 50zsupcllemex 12083 1 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  {crab 2476   class class class wbr 4029  cfv 5254  cr 7871  0cc0 7872  1c1 7873   < clt 8054  cn 8982  cz 9317  cuz 9592  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931
This theorem is referenced by:  gcddvds  12100  dvdslegcd  12101
  Copyright terms: Public domain W3C validator