ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf4dc GIF version

Theorem nf4dc 1668
Description: Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1669, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.)
Assertion
Ref Expression
nf4dc (DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))

Proof of Theorem nf4dc
StepHypRef Expression
1 nf2 1666 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 imordc 897 . . 3 (DECID𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)))
31, 2bitrid 192 . 2 (DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)))
4 orcom 728 . . 3 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
5 alnex 1497 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
65orbi2i 762 . . 3 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
74, 6bitr4i 187 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
83, 7bitrdi 196 1 (DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 708  DECID wdc 834  wal 1351  wnf 1458  wex 1490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-gen 1447  ax-ie2 1492  ax-4 1508  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-fal 1359  df-nf 1459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator