ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf4dc GIF version

Theorem nf4dc 1663
Description: Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1664, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.)
Assertion
Ref Expression
nf4dc (DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))

Proof of Theorem nf4dc
StepHypRef Expression
1 nf2 1661 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 imordc 892 . . 3 (DECID𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)))
31, 2syl5bb 191 . 2 (DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)))
4 orcom 723 . . 3 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
5 alnex 1492 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
65orbi2i 757 . . 3 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
74, 6bitr4i 186 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
83, 7bitrdi 195 1 (DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 703  DECID wdc 829  wal 1346  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator