| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nf4dc | GIF version | ||
| Description: Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1685, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.) |
| Ref | Expression |
|---|---|
| nf4dc | ⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf2 1682 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | imordc 898 | . . 3 ⊢ (DECID ∃𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))) | |
| 3 | 1, 2 | bitrid 192 | . 2 ⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))) |
| 4 | orcom 729 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
| 5 | alnex 1513 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 6 | 5 | orbi2i 763 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
| 7 | 4, 6 | bitr4i 187 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
| 8 | 3, 7 | bitrdi 196 | 1 ⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |