Proof of Theorem divgcdodd
Step | Hyp | Ref
| Expression |
1 | | n2dvds1 11871 |
. . . 4
⊢ ¬ 2
∥ 1 |
2 | | 2z 9240 |
. . . . . . 7
⊢ 2 ∈
ℤ |
3 | | nnz 9231 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
4 | | nnz 9231 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
5 | | gcddvds 11918 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
6 | 3, 4, 5 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
7 | 6 | simpld 111 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
8 | | gcdnncl 11922 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
9 | 8 | nnzd 9333 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ) |
10 | 8 | nnne0d 8923 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0) |
11 | 3 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℤ) |
12 | | dvdsval2 11752 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
13 | 9, 10, 11, 12 | syl3anc 1233 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
14 | 7, 13 | mpbid 146 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) |
15 | 6 | simprd 113 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
16 | 4 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℤ) |
17 | | dvdsval2 11752 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
18 | 9, 10, 16, 17 | syl3anc 1233 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
19 | 15, 18 | mpbid 146 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) |
20 | | dvdsgcdb 11968 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ (𝐴 /
(𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))) |
21 | 2, 14, 19, 20 | mp3an2i 1337 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))) |
22 | | gcddiv 11974 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))) |
23 | 11, 16, 8, 6, 22 | syl31anc 1236 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))) |
24 | 8 | nncnd 8892 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ) |
25 | 8 | nnap0d 8924 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) # 0) |
26 | 24, 25 | dividapd 8703 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1) |
27 | 23, 26 | eqtr3d 2205 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) |
28 | 27 | breq2d 4001 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2
∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ 1)) |
29 | 28 | biimpd 143 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2
∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1)) |
30 | 21, 29 | sylbid 149 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1)) |
31 | 30 | expdimp 257 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) → (2 ∥ (𝐵 / (𝐴 gcd 𝐵)) → 2 ∥ 1)) |
32 | 1, 31 | mtoi 659 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) |
33 | 32 | ex 114 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2
∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) |
34 | | 2nn 9039 |
. . . 4
⊢ 2 ∈
ℕ |
35 | | dvdsdc 11760 |
. . . 4
⊢ ((2
∈ ℕ ∧ (𝐴 /
(𝐴 gcd 𝐵)) ∈ ℤ) →
DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) |
36 | 34, 14, 35 | sylancr 412 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) |
37 | | imordc 892 |
. . 3
⊢
(DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))) |
38 | 36, 37 | syl 14 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2
∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))) |
39 | 33, 38 | mpbid 146 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) |