Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdodd GIF version

Theorem divgcdodd 11880
 Description: Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
divgcdodd ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divgcdodd
StepHypRef Expression
1 n2dvds1 11668 . . . 4 ¬ 2 ∥ 1
2 2z 9129 . . . . . . 7 2 ∈ ℤ
3 nnz 9120 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
4 nnz 9120 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
5 gcddvds 11711 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
63, 4, 5syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
76simpld 111 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
8 gcdnncl 11715 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
98nnzd 9219 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
108nnne0d 8812 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
113adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
12 dvdsval2 11555 . . . . . . . . 9 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
139, 10, 11, 12syl3anc 1217 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
147, 13mpbid 146 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
156simprd 113 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
164adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
17 dvdsval2 11555 . . . . . . . . 9 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
189, 10, 16, 17syl3anc 1217 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
1915, 18mpbid 146 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
20 dvdsgcdb 11760 . . . . . . 7 ((2 ∈ ℤ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))))
212, 14, 19, 20mp3an2i 1321 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))))
22 gcddiv 11766 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
2311, 16, 8, 6, 22syl31anc 1220 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
248nncnd 8781 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
258nnap0d 8813 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) # 0)
2624, 25dividapd 8593 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
2723, 26eqtr3d 2175 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
2827breq2d 3950 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ 1))
2928biimpd 143 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1))
3021, 29sylbid 149 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1))
3130expdimp 257 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (2 ∥ (𝐵 / (𝐴 gcd 𝐵)) → 2 ∥ 1))
321, 31mtoi 654 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))
3332ex 114 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
34 2nn 8928 . . . 4 2 ∈ ℕ
35 dvdsdc 11560 . . . 4 ((2 ∈ ℕ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) → DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))
3634, 14, 35sylancr 411 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))
37 imordc 883 . . 3 (DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3836, 37syl 14 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3933, 38mpbid 146 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698  DECID wdc 820   = wceq 1332   ∈ wcel 1481   ≠ wne 2309   class class class wbr 3938  (class class class)co 5784  0cc0 7667  1c1 7668   / cdiv 8479  ℕcn 8767  2c2 8818  ℤcz 9101   ∥ cdvds 11552   gcd cgcd 11694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7758  ax-resscn 7759  ax-1cn 7760  ax-1re 7761  ax-icn 7762  ax-addcl 7763  ax-addrcl 7764  ax-mulcl 7765  ax-mulrcl 7766  ax-addcom 7767  ax-mulcom 7768  ax-addass 7769  ax-mulass 7770  ax-distr 7771  ax-i2m1 7772  ax-0lt1 7773  ax-1rid 7774  ax-0id 7775  ax-rnegex 7776  ax-precex 7777  ax-cnre 7778  ax-pre-ltirr 7779  ax-pre-ltwlin 7780  ax-pre-lttrn 7781  ax-pre-apti 7782  ax-pre-ltadd 7783  ax-pre-mulgt0 7784  ax-pre-mulext 7785  ax-arch 7786  ax-caucvg 7787 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4555  df-rel 4556  df-cnv 4557  df-co 4558  df-dm 4559  df-rn 4560  df-res 4561  df-ima 4562  df-iota 5098  df-fun 5135  df-fn 5136  df-f 5137  df-f1 5138  df-fo 5139  df-f1o 5140  df-fv 5141  df-riota 5740  df-ov 5787  df-oprab 5788  df-mpo 5789  df-1st 6048  df-2nd 6049  df-recs 6212  df-frec 6298  df-sup 6884  df-pnf 7849  df-mnf 7850  df-xr 7851  df-ltxr 7852  df-le 7853  df-sub 7982  df-neg 7983  df-reap 8384  df-ap 8391  df-div 8480  df-inn 8768  df-2 8826  df-3 8827  df-4 8828  df-n0 9025  df-z 9102  df-uz 9374  df-q 9462  df-rp 9494  df-fz 9845  df-fzo 9974  df-fl 10097  df-mod 10150  df-seqfrec 10273  df-exp 10347  df-cj 10669  df-re 10670  df-im 10671  df-rsqrt 10825  df-abs 10826  df-dvds 11553  df-gcd 11695 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator