ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdodd GIF version

Theorem divgcdodd 12075
Description: Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
divgcdodd ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divgcdodd
StepHypRef Expression
1 n2dvds1 11849 . . . 4 ¬ 2 ∥ 1
2 2z 9219 . . . . . . 7 2 ∈ ℤ
3 nnz 9210 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
4 nnz 9210 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
5 gcddvds 11896 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
63, 4, 5syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
76simpld 111 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
8 gcdnncl 11900 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
98nnzd 9312 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
108nnne0d 8902 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
113adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
12 dvdsval2 11730 . . . . . . . . 9 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
139, 10, 11, 12syl3anc 1228 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
147, 13mpbid 146 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
156simprd 113 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
164adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
17 dvdsval2 11730 . . . . . . . . 9 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
189, 10, 16, 17syl3anc 1228 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ))
1915, 18mpbid 146 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)
20 dvdsgcdb 11946 . . . . . . 7 ((2 ∈ ℤ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))))
212, 14, 19, 20mp3an2i 1332 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))))
22 gcddiv 11952 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
2311, 16, 8, 6, 22syl31anc 1231 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
248nncnd 8871 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
258nnap0d 8903 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) # 0)
2624, 25dividapd 8682 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
2723, 26eqtr3d 2200 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
2827breq2d 3994 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ 1))
2928biimpd 143 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1))
3021, 29sylbid 149 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1))
3130expdimp 257 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (2 ∥ (𝐵 / (𝐴 gcd 𝐵)) → 2 ∥ 1))
321, 31mtoi 654 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))
3332ex 114 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
34 2nn 9018 . . . 4 2 ∈ ℕ
35 dvdsdc 11738 . . . 4 ((2 ∈ ℕ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) → DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))
3634, 14, 35sylancr 411 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))
37 imordc 887 . . 3 (DECID 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3836, 37syl 14 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))))
3933, 38mpbid 146 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  (class class class)co 5842  0cc0 7753  1c1 7754   / cdiv 8568  cn 8857  2c2 8908  cz 9191  cdvds 11727   gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  pythagtrip  12215
  Copyright terms: Public domain W3C validator