| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnan | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| intnan | ⊢ ¬ (𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | simpr 110 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | 1, 2 | mto 663 | 1 ⊢ ¬ (𝜓 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: bianfi 949 axnul 4159 fodjum 7221 nninfwlporlemd 7247 2omotaplemap 7340 xrltnr 9871 nltmnf 9880 3lcm2e6woprm 12279 6lcm4e12 12280 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |