ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnan GIF version

Theorem intnan 924
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
Hypothesis
Ref Expression
intnan.1 ¬ 𝜑
Assertion
Ref Expression
intnan ¬ (𝜓𝜑)

Proof of Theorem intnan
StepHypRef Expression
1 intnan.1 . 2 ¬ 𝜑
2 simpr 109 . 2 ((𝜓𝜑) → 𝜑)
31, 2mto 657 1 ¬ (𝜓𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-in1 609  ax-in2 610
This theorem is referenced by:  bianfi  942  axnul  4114  fodjum  7122  nninfwlporlemd  7148  xrltnr  9736  nltmnf  9745  3lcm2e6woprm  12040  6lcm4e12  12041  subctctexmid  14034
  Copyright terms: Public domain W3C validator