ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnan GIF version

Theorem intnan 931
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
Hypothesis
Ref Expression
intnan.1 ¬ 𝜑
Assertion
Ref Expression
intnan ¬ (𝜓𝜑)

Proof of Theorem intnan
StepHypRef Expression
1 intnan.1 . 2 ¬ 𝜑
2 simpr 110 . 2 ((𝜓𝜑) → 𝜑)
31, 2mto 664 1 ¬ (𝜓𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  bianfi  950  axnul  4177  fodjum  7263  nninfwlporlemd  7289  iftrueb01  7354  pw1if  7356  2omotaplemap  7389  xrltnr  9921  nltmnf  9930  3lcm2e6woprm  12483  6lcm4e12  12484  subctctexmid  16078
  Copyright terms: Public domain W3C validator