ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltmnf GIF version

Theorem nltmnf 9980
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
nltmnf (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)

Proof of Theorem nltmnf
StepHypRef Expression
1 mnfnre 8185 . . . . . . 7 -∞ ∉ ℝ
21neli 2497 . . . . . 6 ¬ -∞ ∈ ℝ
32intnan 934 . . . . 5 ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ)
43intnanr 935 . . . 4 ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞)
5 pnfnemnf 8197 . . . . . 6 +∞ ≠ -∞
65nesymi 2446 . . . . 5 ¬ -∞ = +∞
76intnan 934 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ = +∞)
84, 7pm3.2ni 818 . . 3 ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞))
96intnan 934 . . . 4 ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞)
102intnan 934 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ)
119, 10pm3.2ni 818 . . 3 ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))
128, 11pm3.2ni 818 . 2 ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))
13 mnfxr 8199 . . 3 -∞ ∈ ℝ*
14 ltxr 9967 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1513, 14mpan2 425 . 2 (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1612, 15mtbiri 679 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  cr 7994   < cltrr 7999  +∞cpnf 8174  -∞cmnf 8175  *cxr 8176   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182
This theorem is referenced by:  mnfle  9984  xrltnsym  9985  xrlttr  9987  xrltso  9988  xltnegi  10027  xposdif  10074  qbtwnxr  10472  xrmaxiflemab  11753  xrmaxltsup  11764  xrbdtri  11782  blssioo  15221
  Copyright terms: Public domain W3C validator