| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltmnf | GIF version | ||
| Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| nltmnf | ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8069 | . . . . . . 7 ⊢ -∞ ∉ ℝ | |
| 2 | 1 | neli 2464 | . . . . . 6 ⊢ ¬ -∞ ∈ ℝ |
| 3 | 2 | intnan 930 | . . . . 5 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) |
| 4 | 3 | intnanr 931 | . . . 4 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) |
| 5 | pnfnemnf 8081 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
| 6 | 5 | nesymi 2413 | . . . . 5 ⊢ ¬ -∞ = +∞ |
| 7 | 6 | intnan 930 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ = +∞) |
| 8 | 4, 7 | pm3.2ni 814 | . . 3 ⊢ ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) |
| 9 | 6 | intnan 930 | . . . 4 ⊢ ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞) |
| 10 | 2 | intnan 930 | . . . 4 ⊢ ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ) |
| 11 | 9, 10 | pm3.2ni 814 | . . 3 ⊢ ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)) |
| 12 | 8, 11 | pm3.2ni 814 | . 2 ⊢ ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))) |
| 13 | mnfxr 8083 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 14 | ltxr 9850 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) | |
| 15 | 13, 14 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 <ℝ -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))))) |
| 16 | 12, 15 | mtbiri 676 | 1 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 <ℝ cltrr 7883 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 < clt 8061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 |
| This theorem is referenced by: mnfle 9867 xrltnsym 9868 xrlttr 9870 xrltso 9871 xltnegi 9910 xposdif 9957 qbtwnxr 10347 xrmaxiflemab 11412 xrmaxltsup 11423 xrbdtri 11441 blssioo 14789 |
| Copyright terms: Public domain | W3C validator |