ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltmnf GIF version

Theorem nltmnf 9467
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
nltmnf (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)

Proof of Theorem nltmnf
StepHypRef Expression
1 mnfnre 7732 . . . . . . 7 -∞ ∉ ℝ
21neli 2379 . . . . . 6 ¬ -∞ ∈ ℝ
32intnan 897 . . . . 5 ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ)
43intnanr 898 . . . 4 ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞)
5 pnfnemnf 7744 . . . . . 6 +∞ ≠ -∞
65nesymi 2328 . . . . 5 ¬ -∞ = +∞
76intnan 897 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ = +∞)
84, 7pm3.2ni 785 . . 3 ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞))
96intnan 897 . . . 4 ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞)
102intnan 897 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ)
119, 10pm3.2ni 785 . . 3 ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))
128, 11pm3.2ni 785 . 2 ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))
13 mnfxr 7746 . . 3 -∞ ∈ ℝ*
14 ltxr 9455 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1513, 14mpan2 419 . 2 (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1612, 15mtbiri 647 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680   = wceq 1314  wcel 1463   class class class wbr 3895  cr 7546   < cltrr 7551  +∞cpnf 7721  -∞cmnf 7722  *cxr 7723   < clt 7724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-xp 4505  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729
This theorem is referenced by:  mnfle  9471  xrltnsym  9472  xrlttr  9474  xrltso  9475  xltnegi  9511  xposdif  9558  qbtwnxr  9928  xrmaxiflemab  10908  xrmaxltsup  10919  xrbdtri  10937  blssioo  12531
  Copyright terms: Public domain W3C validator